Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 2(5): 100214, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34746760

RESUMO

Sphingolipids, which comprise membrane systems together with other lipids, are ubiquitous in cellular organisms. They show a high degree of diversity across plant species and vary in their structures, properties, and functions. Benefiting from the development of lipidomic techniques, over 300 plant sphingolipids have been identified. Generally divided into free long-chain bases (LCBs), ceramides, glycosylceramides (GlcCers) and glycosyl inositol phosphoceramides (GIPCs), plant sphingolipids exhibit organized aggregation within lipid membranes to form raft domains with sterols. Accumulating evidence has revealed that sphingolipids obey certain trafficking and distribution rules and confer unique properties to membranes. Functional studies using sphingolipid biosynthetic mutants demonstrate that sphingolipids participate in plant developmental regulation, stimulus sensing, and stress responses. Here, we present an updated metabolism/degradation map and summarize the structures of plant sphingolipids, review recent progress in understanding the functions of sphingolipids in plant development and stress responses, and review sphingolipid distribution and trafficking in plant cells. We also highlight some important challenges and issues that we may face during the process of studying sphingolipids.


Assuntos
Plantas/metabolismo , Esfingolipídeos/metabolismo , Transporte Biológico
2.
Plant Methods ; 14: 85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305839

RESUMO

BACKGROUND: When developing CRISPR/Cas9 systems for crops, it is crucial to invest time characterizing the genome editing efficiency of the CRISPR/Cas9 cassettes, especially if the transformation system is difficult or time-consuming. Cotton is an important crop for the production of fiber, oil, and biofuel. However, the cotton stable transformation is usually performed using Agrobacterium tumefaciens taking between 8 and 12 months to generate T0 plants. Furthermore, cotton is a heterotetraploid and targeted mutagenesis is considered to be difficult as many genes are duplicated in this complex genome. The application of CRISPR/Cas9 in cotton is severely hampered by the long and technically challenging genetic transformation process, making it imperative to maximize its efficiency. RESULTS: In this study, we provide a new system to evaluate and validate the efficiency of CRISPR/Cas9 cassettes in cotton using a transient expression system. By using this system, we could select the most effective CRISPR/Cas9 cassettes before the stable transformation. We have also optimized the existing cotton CRISPR/Cas9 system to achieve vastly improved mutagenesis efficiency by incorporating an endogenous GhU6 promoter that increases sgRNA expression levels over the Arabidopsis AtU6-29 promoter. The 300 bp GhU6.3 promoter was cloned and validated using the transient expression system. When sgRNAs were expressed under the control of the GhU6.3 promoter in CRISPR/Cas9 cassettes, expression levels were 6-7 times higher than those provided by the AtU6-29 promoter and CRISPR/Cas9-mediated mutation efficiency was improved 4-6 times. CONCLUSIONS: This study provides essential improvements to maximize CRISPR/Cas9-mediated mutation efficiency by reducing risk and workload for the application of CRISPR/Cas9 approaches in the targeted mutagenesis of cotton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...