Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2245, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472279

RESUMO

Bifacial perovskite solar cells have shown great promise for increasing power output by capturing light from both sides. However, the suboptimal optical transmittance of back metal electrodes together with the complex fabrication process associated with front transparent conducting oxides have hindered the development of efficient bifacial PSCs. Here, we present a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes. single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. We also fabricate flexible, all-carbon-electrode-based devices with a high power-per-weight value of 73.75 W g-1 and excellent mechanical durability. Furthermore, we show that our bifacial devices have a much lower material cost than conventional monofacial PSCs. Our work demonstrates the potential of SWCNT electrodes for efficient, stable, and low-cost bifacial perovskite photovoltaics.

2.
J Colloid Interface Sci ; 664: 1012-1020, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508029

RESUMO

The development of cost-effective, high-activity and stable catalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) plays a critical part in commercialization application of rechargeable Zn-air batteries (RZABs). Herein, a multiscale nanoengineering strategy is developed to simultaneously stabilize Co-doped Fe nanoparticles originated from metal-organic framework-derived approach and atomic Fe/Co sites derived from metal nanoparticle-atomized way on N-doped hierarchically tubular porous carbon substrate. Thereinto, metal nanoparticles and single atoms are respectively used to expedite the OER and ORR. Consequently, the final material is acted as an oxygen electrode catalyst, displaying 0.684 V of OER/ORR potential gap, 260 mW cm-2 of peak power density for liquid-state RZAB, 110 mW cm-2 of peak power density for solid-state RZAB, and 1000 charge-discharge cycles without decay, which confirms great potential for energy storage and conversion applications.

3.
ACS Appl Mater Interfaces ; 16(13): 16164-16174, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514249

RESUMO

Single-metal-site catalysts have recently aroused extensive research in electrochemical energy fields such as zinc-air batteries and water splitting, but their preparation is still a huge challenge, especially in flexible catalyst films. Herein, we propose a sublimation strategy in which metal phthalocyanine molecules with defined isolated metal-N4 sites are gasified by sublimation and then deposited on flexible single-wall carbon nanotube (SWCNT) films by means of π-π coupling interactions. Specifically, iron phthalocyanine anchored on the SWCNT film prepared was directly used to boost the cathodic oxygen reduction reaction of the zinc-air battery, showing a high peak power density of 247 mW cm-2. Nickel phthalocyanine and cobalt phthalocyanine were, respectively, stabilized on SWCNT films as the anodic and cathodic electrocatalysts for water splitting, showing a low potential of 1.655 V at 10 mA cm-2. In situ Raman spectra and theoretical studies demonstrate that highly efficient activities originate from strain-induced metal phthalocyanine on SWCNTs. This work provides a universal preparation method for single-metal-site catalysts and innovative insights for electrocatalytic mechanisms.

4.
ACS Nano ; 17(18): 18290-18298, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37706683

RESUMO

Lightweight carbon nanotube fibers (CNTFs) with high electrical conductivity and high tensile strength are considered to be an ideal wiring medium for a wide range of applications. However, connecting CNTFs with metals by soldering is extremely difficult due to the nonreactive nature and poor wettability of CNTs. Here we report a strong connection between single-wall CNTFs (SWCNTFs) and a Cu matrix by introducing an intermediate Ni layer, which enables the formation of mechanically strong and electrically conductive joints between SWCNTFs and a eutectic Sn-37Pb alloy. The electrical resistance change rate (ΔR/R0) of Ni-SWCNTF/solder-Cu interconnects only decreases ∼29.8% after 450 thermal shock cycles between temperatures of -196 and 150 °C, which is 8.2 times lower than that without the Ni layer. First-principles calculations indicate that the introduction of the Ni layer significantly improves the heterogeneous interfacial bond strength of the Ni-SWCNTF/solder-Cu connections.

5.
Nano Lett ; 23(17): 8331-8338, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647133

RESUMO

The great interest in large-scale electrochemical water splitting toward clean hydrogen has spurred large numbers of studies on developing cost-efficient and high-performance bifunctional electrocatalysts. Here, a Prussian-blue-analogue-derived method is proposed to prepare honeycomb-like ultrathin and heterogeneous Co2P-Fe2P nanosheets on nickel foam, showing low overpotentials of 0.080, 0.088, and 0.109 V for the hydrogen evolution reaction (HER) at 10 mA cm-2 as well as 0.290, 0.370, and 0.730 V for the oxygen evolution reaction (OER) at 50 mA cm-2 in alkaline, acidic, and neutral electrolytes, respectively. When directly applied for universal-pH water electrolysis, excellent performances are achieved especially at ultralow voltages of 1.45 V at 10 mA cm-2, 1.66 V at 100 mA cm-2, and 1.79 V at 500 mA cm-2 under alkaline conditions. In situ Raman spectroscopy measurements demonstrate that the excellent HER performance can be attributed to heterogeneous Co2P-Fe2P while the ultrahigh alkaline OER performance originates from reconstruction-induced oxyhydroxides.

6.
ACS Appl Mater Interfaces ; 15(31): 37802-37809, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37503798

RESUMO

Single-wall carbon nanotubes (SWCNTs) with excellent physicochemical properties are considered a promising candidate for the electrical and mechanical reinforcements of polymers. However, the poor dispersion of SWCNTs in plastics seriously limits their application and their achieved performance enhancement. Here, we coat a freestanding, highly conductive SWCNT film onto the surface of a polyethylene terephthalate (PET) film by a hot-pressing method. Due to the uniform SWCNT network structure and strong interfacial interaction, the SWCNT/PET hybrid film showed notably enhanced electrical and mechanical properties even though with a very low SWCNT weight fraction of 0.066%. The surface square resistance of the SWCNT/PET film decreased to 120-140 Ω/□ from 1016 Ω. In addition, Young's modulus and tensile strength of the SWCNT/PET film reached 4.6 GPa and 148 MPa, which are 31.3 and 24.4%, respectively, higher than the pure PET film. The SWCNT/PET film shows excellent mechanical durability and thermal stability, demonstrating its potential use as an antistatic material.

7.
Nanomaterials (Basel) ; 13(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446517

RESUMO

Semiconducting single-walled carbon nanotubes (s-SWCNTs) with large diameters are highly desired in the construction of high performance optoelectronic devices. However, it is difficult to selectively prepare large-diameter s-SWCNTs since their structure and chemical stability are quite similar with their metallic counterparts. In this work, we use SWCNTs with large diameter as a raw material, conjugated polymer of regioregular poly-(3-dodecylthiophene) (rr-P3DDT) with long side chain as a wrapping agent to selectively separate large-diameter s-SWCNTs. It is found that s-SWCNTs with a diameter of ~1.9 nm are effectively enriched, which shows a clean surface. By using the sorted s-SWCNTs as a channel material, we constructed thin-film transistors showing charge-carrier mobilities higher than 10 cm2 V-1 s-1 and on/off ratios higher than 103.

8.
ACS Nano ; 17(10): 9245-9254, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37129039

RESUMO

Carbon nanotube (CNT)/Cu core-shell fibers are a promising material for lightweight conductors due to their higher conductivity than pure CNT fibers and lower density than traditional Cu wires. However, the electrical properties of the hybrid fiber have been unsatisfactory, mainly because of the weak CNT-Cu interfacial interaction. Here we report the fabrication of a single-walled CNT (SWCNT)/Cu core-shell fiber that outperforms commercial Cu wires in terms of specific electrical conductivity and current carrying capacity. A dense and uniform Cu shell was coated on the surface of wet-spun SWCNT fibers using a combination of magnetron sputtering and electrochemical deposition. Our SWCNT/Cu core-shell fibers had an ultrahigh specific electrical conductivity of (1.01 ± 0.04) × 104 S m2 kg-1, 56% higher than Cu. Experimental and simulation results show that oxygen-containing functional groups on the surface of a wet-spun SWCNT fiber interact with the sputtered Cu atoms to produce strong bonding. Our hybrid fiber preserved its integrity and conductivity well after more than 5000 bending cycles. Furthermore, the current carrying capacity of the coaxial fiber reached 3.14 × 105 A cm-2, three times that of commercial Cu wires.

9.
Nanoscale ; 15(8): 3931-3939, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723243

RESUMO

Single-wall carbon nanotubes (SWCNTs) with ultra-thin channels are considered promising nanoreactors for confined catalysis, chemical reactions, and drug delivery. The fabrication of SWCNT nanoreactors by cutting usually suffers from low efficiency and poor controllability. Here we develop a defect-induced gas etching method to efficiently cut SWCNTs and to obtain nanoreactors with ultrasmall confined space. H2 plasma treatment was performed to generate defects in the walls of SWCNTs, then H2O vapor was used as a "knife" to cut SWCNTs at the defect sites, and short cut-SWCNTs with an average length of 175 nm were controllably obtained with a high yield of 75% under optimized conditions. WO3@SWCNT derivatives with different morphologies were synthesized using short cut-SWCNTs as nanoreactors. The radiation resistance of WO3@SWCNT hybrids improved obviously, thus providing a platform for the synthesis of novel SWCNT-based derivatives with fascinating properties.

10.
Adv Sci (Weinh) ; 10(13): e2206989, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36815396

RESUMO

Single-wall carbon nanotube/silicon (SWCNT/Si) heterojunction shows appealing potential for use in photovoltaic devices. However, the relatively low conductivity of SWCNT network and interfacial recombination of carriers have limited their photovoltaic performance. Herein, a multifunctional Lewis acid (p-toluenesulfonic acid, TsOH) is used to significantly reduce the energy loss in SWCNT/Si solar cells. Owing to the charge transfer doping effect of TsOH, the conductivity and work function of SWCNT films are optimized and tuned. More importantly, a chemical bridge is constructed at the interface of SWCNT/Si heterojunction. Experimental studies indicate that the phenyl group of TsOH can interact with SWCNTs through π-π interaction, meanwhile, the oxygen in the sulfonic functional group of the TsOH molecule can graft on the dangling bonds of the Si surface. The chemical bridge structure effectively suppresses the recombination of photogenerated carriers. The TsOH coating also works as an antireflection layer, leading to a 19% increment of the photocurrent. As a result, a champion power conversion efficiency of 17.7% is achieved for the TsOH-SWCNT/Si device, and it also exhibits an excellent stability, retaining more than 96% of the initial efficiency in the ambient air after 1 month.

11.
ACS Nano ; 16(12): 20263-20271, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36475640

RESUMO

High-purity and well-graphitized single-walled carbon nanotubes (SWCNTs) with excellent physiochemical properties are ideal building blocks for the assembly of various CNT macrostructures for a wide range of applications. We report the preparation of high-quality SWCNTs on a large scale using a floating catalyst chemical vapor deposition (FCCVD) method. Under the optimum conditions, the conversion rate of the carbon source to SWCNTs reached 28.8%, and 20.4% of the metal nanoparticles were active for SWCNT growth, which are 15% and ∼400 times higher than those previously reported for FCCVD synthesis, respectively. As a result, the prepared SWCNTs have a very low residual catalyst content of ∼1.9 wt % and a high rapid oxidation temperature of 717 °C. Using these high-quality SWCNTs, we spun macroscopic SWCNT fibers by a wet-spinning process. The resulting fibers had a high electrical conductivity of 6.67 MS/m, which is 32% higher than the best value previously reported for SWCNT fibers.

12.
Molecules ; 27(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235060

RESUMO

Carbon nanotubes (CNTs) are considered a promising candidate for the detection of toxic gases because of their high specific surface area and excellent electrical and mechanical properties. However, the detecting performance of CNT-based detectors needs to be improved because covalently bonded CNTs are usually chemically inert. We prepared a nitrogen-doped single-wall CNT (SWCNT) film by means of gas-phase fluorination followed by thermal annealing in NH3. The doped nitrogen content could be changed in the range of 2.9-9.9 at%. The N-doped SWCNT films were directly used to construct flexible and transparent gas sensors, which can work at a low voltage of 0.01 V. It was found that their NO2 detection performance was closely related to their nitrogen content. With an optimum nitrogen content of 9.8 at%, a flexible sensor had a detection limit of 500 ppb at room temperature with good cycling ability and stability during bending.

13.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080149

RESUMO

Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good stability and unique metallic or semiconducting electrical conductivity, they are therefore considered a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the Internet of Things and various portable and wearable electronics. In this review, we first introduce the sensing mechanism of SWCNTs and the typical structure and key parameters of SWCNT-based gas sensors. We then summarize research progress on the design, fabrication, and performance of SWCNT-based gas sensors. Finally, the principles and possible approaches to further improving the performance of SWCNT-based gas sensors are discussed.


Assuntos
Nanotubos de Carbono , Eletrônica , Nanotubos de Carbono/química
14.
ACS Nano ; 16(1): 232-240, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34995440

RESUMO

The controlled growth of metallic single-wall carbon nanotubes (m-SWCNTs) is very important for the fabrication of high-performance interconnecting wires, transparent conductive electrodes, light and conductive fibers, etc. However, it has been extremely difficult to synthesize m-SWCNTs due to their lower abundance and higher chemical reactivity than semiconducting SWCNTs (s-SWCNTs). Here, we report the kinetically controlled growth of m-SWCNTs by manipulating their binding energy with the catalyst and promoting their growth rate. We prepared CoRe4 nanoparticles with a hexagonal close-packed structure and an average size of ∼2.3 nm, which have a lower binding energy with m-SWCNTs than with s-SWCNTs. The selective growth of m-SWCNTs from the CoRe4 catalyst was achieved by using a low concentration of carbon source feed at a relative low temperature of 760 °C. The m-SWCNTs had a narrow diameter distribution of 1.1 ± 0.3 nm, and their content was over 80%.

15.
ACS Appl Mater Interfaces ; 13(49): 58576-58584, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851600

RESUMO

Inexpensive carbon-based nitrogen-coordinated iron single-atom catalysts (CN-FeSACs) have been recently demonstrated as the most promising platinum substitutions for boosting the sluggish oxygen electrode performance in fuel cells and metal-air batteries. However, it is still a great challenge to develop economical and effective CN-FeSACs satisfying the needs of high output power. Herein, an ionothermal-transformation strategy is proposed to synthesize hierarchically tubular porous CN-FeSACs with an ultrahigh special surface area of 2500 m2 g-1 to host abundant single-atom iron sites with an attempt to simultaneously boost sluggish oxygen reduction reaction (ORR) kinetics and mass transport. Benefiting from the unique feature, the final obtained material shows an ORR half-wave potential of 0.885 V, higher than that of benchmark Pt/C (0.850 V). When assembled into zinc-air battery, a large peak power density of 208 mW cm-2 is achieved, which is far superior to that of Pt/C (119 mW cm-2). This work provides an economical and feasible strategy to prepare hierarchically porous CN-FeSACs for energy conversion.

16.
ACS Omega ; 6(50): 34301-34313, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963916

RESUMO

Direct-write additive manufacturing of graphene and carbon nanotube (CNT) patterns by aerosol jet printing (AJP) is promising for the creation of thermal and electrical interconnects in (opto)electronics. In realistic application scenarios, this however often requires deposition of graphene and CNT patterns on rugged substrates such as, for example, roughly machined and surface-oxidized metal block heat sinks. Most AJP of graphene/CNT patterns has thus far however concentrated on flat wafer- or foil-type substrates. Here, we demonstrate AJP of graphene and single walled CNT (SWCNT) patterns on realistically rugged plasma-electrolytic-oxidized (PEO) Al blocks, which are promising heat sink materials. We show that AJP on the rugged substrates offers line resolution of down to ∼40 µm width for single AJP passes, however, at the cost of noncomplete substrate coverage including noncovered µm-sized pores in the PEO Al blocks. With multiple AJP passes, full coverage including coverage of the pores is, however, readily achieved. Comparing archetypical aqueous and organic graphene and SWCNT inks, we show that the choice of the ink system drastically influences the nanocarbon AJP parameter window, deposit microstructure including crystalline quality, compactness of deposit, and inter/intrapass layer adhesion for multiple passes. Simple electrical characterization indicates aqueous graphene inks as the most promising choice for AJP-deposited electrical interconnect applications. Our parameter space screening thereby forms a framework for rational process development for graphene and SWCNT AJP on application-relevant, rugged substrates.

17.
Science ; 374(6575): 1616-1620, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941420

RESUMO

Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.

18.
Nano Lett ; 21(10): 4508-4515, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33998804

RESUMO

Highly efficient noble-metal-free electrocatalysts for oxygen reduction reaction (ORR) are essential to reduce the costs of fuel cells and metal-air batteries. Herein, a single-atom Ce-N-C catalyst, constructed of atomically dispersed Ce anchored on N-doped porous carbon nanowires, is proposed to boost the ORR. This catalyst has a high Ce content of 8.55 wt % and a high activity with ORR half-wave potentials of 0.88 V in alkaline media and 0.75 V in acidic electrolytes, which are comparable to widely studied Fe-N-C catalysts. A Zn-air battery based on this material shows excellent performance and durability. Density functional theory calculations reveal that atomically dispersed Ce with adsorbed hydroxyl species (OH) can significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.

19.
ACS Appl Mater Interfaces ; 12(38): 43032-43041, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32856890

RESUMO

The use of precious metals in many areas, such as printed circuit boards, catalysts, and targeted drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge. Here, we report a sandwiched Ti3C2Tx MXene/carbon nanotube (CNT) hybrid membrane, where the CNT isolates and supports the MXene sheets, which act as a reducing agent. The hybrid membrane shows excellent ability to capture precious metal ions in solution with a high flux. The water permeability of the membrane reaches 437.6 L m-2 h-1 bar-1 (2.46 × 10-18 m2), about 202 times higher than that of a pure Ti3C2Tx membrane, and captures 99.8% Au(III) from a solution with an extremely low concentration of 20 ppm. The desirable precious metal trapping capability of the Ti3C2Tx-CNT film is due to the high redox activity of C-Ti-OH. This work provides an efficient way for the recovery of precious metal ions from wastewater.

20.
Adv Sci (Weinh) ; 6(12): 1802177, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31380158

RESUMO

Noble-metal free, cost-effective, and highly stable catalysts with efficient activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have attracted tremendous research interest in recent years. Here, a flexible, self-standing hybrid film comprising a N-doped single-wall carbon nanotube (SWCNT) network on which are anchored Ni nanoparticles encapsulated by a monolayer of N-doped carbon (NCNi) is reported. The films are prepared by floating catalyst chemical vapor deposition followed by NH3 treatment. The material obtained at optimum conditions shows excellent bifunctional electrocatalytic activity in alkaline media with low overpotentials of 190 and 270 mV for HER and OER, respectively, to reach a current density of 10 mA cm-2. A current density of 10 mA cm-2 at 1.57 V is achieved when this freestanding and binder-free rod-shaped NCNi/SWCNT assembly is used as cathode and anode in 1 m KOH solution for overall water splitting, presenting one of the best values reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...