Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Mol Biol ; 31(6): 772-781, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35860987

RESUMO

The oriental fruit fly Bactrocera dorsalis (Hendel) is expanding its distribution to higher latitudes. Our goal in this study was to understand how B. dorsalis adapts to higher latitude environments that are more arid than tropical regions. Cuticular hydrocarbons (CHCs) on the surface of the epicuticle in insects act as a hydrophobic barrier against water loss. The essential decarbonylation reaction in CHC synthesis is catalysed by CYP4G, a cytochrome P450 subfamily protein. Hence, in B. dorsalis it is necessary to clarify the function of the CYP4G gene and its role in desiccation resistance. CYP4G100 was identified in the B. dorsalis genome. The complete open reading frame (ORF) encodes a CYP4 family protein (552 amino acid residues) that has the CYP4G-specific insertion. This CYP4G gene was highly expressed in adults, especially in the oenocyte-rich peripheral fat body. The gene can be induced by desiccation treatment, suggesting its role in CHC synthesis and waterproofing. Silencing of CYP4G100 resulted in a decrease of CHC levels and the accumulation of triglycerides. It also increased water loss and resulted in higher desiccation susceptibility. CYP4G100 is involved in hydrocarbon synthesis and contributes to cuticle waterproofing to help B. dorsalis resist desiccation in arid environments.


Assuntos
Proteínas de Insetos , Tephritidae , Animais , Proteínas de Insetos/metabolismo , Dessecação , Tephritidae/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidrocarbonetos/metabolismo , Drosophila/genética , Água
2.
Pest Manag Sci ; 78(1): 344-354, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34532962

RESUMO

BACKGROUND: Tanning is an important physiological process with critical roles in cuticle pigmentation and sclerotization. Previous studies have shown that insect cuticle tanning is closely associated with the tyrosine metabolism pathway, which consists of a series of enzymes. RESULTS: In this study, 24 tyrosine metabolism pathway genes were identified in the oriental fruit fly Bactrocera dorsalis (Hendel) genome. Gene expression profiles throughout 15 developmental stages of B. dorsalis were established based on our previous RNA sequencing data, and we found that 13 enzyme genes could be involved in the process of pupariation. Accordingly, a tyrosine-mediated tanning pathway during the pupariation of B. dorsalis was predicted and a critical enzyme, 3,4-dihydroxyphenylalanine (DOPA) decarboxylase (DDC), was used to explore its possible roles in formation of the puparium. First, a real-time quantitative polymerase chain reaction confirmed that BdDDC had an epidermis-specific expression pattern, and was highly expressed during larval metamorphosis in B. dorsalis. Subsequent disruption of BdDDC by feeding 5-day-old larvae with DDC inhibitor (l-α-methyl-DOPA) could lead to: (i) a significant decrease in BdDDC enzyme activity and dopamine concentration; (ii) defects in puparium pigmentation; (iii) impairment of the morphology and less thickness of the puparium; and (iv) lower pupal weight and obstacles to eclosion. CONCLUSION: This study provided a potential tyrosine metabolic pathway that was responsible for insect tanning during pupariation, and the BdDDC enzyme has been shown to have crucial roles in larval-pupal tanning of B. dorsalis. © 2021 Society of Chemical Industry.


Assuntos
Dopa Descarboxilase , Tephritidae , Animais , Di-Hidroxifenilalanina , Dopa Descarboxilase/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Redes e Vias Metabólicas , Tephritidae/genética , Tephritidae/metabolismo , Tirosina
3.
Pestic Biochem Physiol ; 178: 104943, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446209

RESUMO

Structural cuticular proteins (CPs) are major components of the insect cuticle, and they play critical roles in insect development and insecticide resistance. Here, a total of 196 CP genes were successfully annotated in the Plutella xylostella genome. On the basis of motif analysis, these CPs were classified into 10 different families, including 122 CPR, 12 CPAP1, 8 CPAP3, 9 CPLCP, 2 Tweedle, 1 CPF, 1 CPFL, 1 CPCFC, 17 CPG and 2 18 aa proteins, and the remaining 21 unclassified CPs were classed as cuticular proteins hypothetical (CPH). A phylogenetic analysis of CPs from different insects revealed species-specific clades of RR-1 and RR-2 genes, suggesting that CP gene duplication might occur independently among insect taxa, while we also found that some other CPs (such as CPAP1 and CPAP3) had a closer relationship based on their conserved domain architecture. Using available RNAseq libraries, the expression profiles of the CPs were analyzed over the four developmental stages of the insect (i.e., egg, larva, pupa, and adult), revealing stage-specific expression patterns for the CPs. In a chlorpyrifos resistant strain, 18 CP genes were found to be more than two-fold upregulated compared to the susceptible control strain, and qRT-PCR analysis showed that these CP genes were overexpressed after exposure to chlorpyrifos, suggesting a potential role in the molecular mechanism of insecticide resistance in P. xylostella. This study provides the tools and molecular basis to study the role of CPs in the post-embryonal development and the mechanisms of insecticide resistance of P. xylostella.


Assuntos
Mariposas , Animais , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Larva/genética , Mariposas/genética , Filogenia
4.
Artigo em Inglês | MEDLINE | ID: mdl-34171685

RESUMO

The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is a holometabolous insect that its cuticles must undergo the significant changes during the larval-pupal metamorphosis development. To elucidate these changes at molecular levels, RNA-seq analysis of cuticles from LLS (later fourth instar larval stage), PPS (prepupal stage) and PS (pupal stage) were performed in P. xylostella. In this paper, a total of 17,710 transcripts were obtained in the larval-pupal transition of P. xylostella, and out of which 2293 (881 up-regulated and 1412 down-regulated) and 2989 transcripts (2062 up-regulated and 927 down-regulated) were identified to be differentially expressed between LLS and PPS, as well as PPS and PS, respectively. The further GO and KEGG analysis of differentially expressed genes (DEGs) revealed that the 'structural constituent of cuticle', 'chitin metabolic process', 'chitin binding', 'tyrosine metabolism' and 'insect hormone biosynthesis' pathways were significantly enriched, indicating these pathways might be involved in the process of larval pupation in P. xylostella. Then, we found some genes that encoded cuticular proteins, chitinolytic enzymes, chitin synthesis enzymes, and cuticle tanning proteins changed their expression levels remarkably, indicating these genes might play important roles in the restruction (degradation and biosynthesis) of insect cuticles during the larval metamorphosis. Additionally, the significant changes in the mRNA levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) related genes suggested their crucial roles in regulating cuticle remodeling during the larval metamorphosis of P. xylostella. In conclusion, the present study provide us the comprehensive gene expression profiles to explore the molecular mechanisms of cuticle metamorphosis in P. xylostella, which laid a molecular basis to study roles of specific pathways and genes in insect development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Mariposas/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , RNA-Seq/métodos , Animais , Proteínas de Insetos/genética , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo , Pupa/genética , Pupa/metabolismo , Transcriptoma
5.
J Econ Entomol ; 114(2): 947-958, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33537732

RESUMO

We used transcriptome analysis to research ovary development in Bactrocera dorsalis (Hendel). The ovary transcriptome of B. dorsalis yielded 66,463,710 clean reads that were assembled into 23,822 unigenes. After aligning to the Nr database in NCBI, 15,473 (64.95%) of the unigenes were matched to identified proteins. As determined by BLAST search, 11,043 (46.36%), 6,102 (25.61%), and 12,603 (52.90%) unigenes were each allocated to clusters via gene ontology, orthologous groups, and SwissProt, respectively. The Kyoto encyclopedia database of genes and genomes (KEGG) was further used to annotate these sequences, and 11,068 unigenes were mapped to 255 known pathways. Afterward, the genes that were possibly involved in oogenesis and ovary development were obtained from the transcriptome data and analyzed. Interestingly, seven ovary-specific genes were identified, including a Nanos gene that is involved in maintaining the primordial germ cells in many insects. Therefore, we further focused on the function of the BdNanos gene, and the gene was injected into B. dorsalis. As expected, the knocking down of Nanos gene expression led to significant inhibition of ovary development, suggesting an important role of this gene in the reproductive process of B. dorsalis. In summary, the present study provides an important reference for identifying the molecular mechanisms of oogenesis and ovary development in B. dorsalis. The BdNanos gene is crucial for ovary development in B. dorsalis and is therefore a potential new pest control target.


Assuntos
Proteínas de Insetos , Ovário/crescimento & desenvolvimento , Tephritidae , Animais , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Tephritidae/genética , Tephritidae/crescimento & desenvolvimento , Transcriptoma
6.
Insect Sci ; 28(5): 1326-1337, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856386

RESUMO

Cuticular proteins (CPs) are critical components of the insect cuticle and play important roles in maintaining normal insect development and defense against various environmental stresses. The oriental fruit fly (Bactrocera dorsalis) is one of the most destructive pests worldwide, and its eight CPs analogous to peritrophin 3 (BdCPAP3) family genes have been identified in our previous study. In the present study, we further explored the possible roles of CPAP3 genes in B. dorsalis development. Each sequence of BdCPAP3 genes contained three conserved ChtBD2 (chitin-binding) domains. Spatial and temporal expression patterns revealed that the four BdCPAP3 genes (BdCPAP3-A1, B, E, and E2) might play important roles in larval pupariation of B. dorsalis. Moreover, treatment with a juvenile hormone analog (methoprene) significantly restricted expression of these four CPAP3 genes, whereas treatment with 20-hydroxy-ecdysone induced expression. The RNA interference (RNAi) results revealed that down-regulated CPAP3 genes led to significant delay of pupariation, and injection of dsBdCPAP3-E into 5-d-old B. dorsalis larvae caused approximately 40% mortality. Interestingly, we also confirmed that BdCPAP3-D2 was involved in B. dorsalis ovarian development. This study showed that some specific CPAP3 genes had crucial roles in B. dorsalis development, and these CP genes could be used as potential targets to control this pest via RNAi.


Assuntos
Proteínas de Insetos , Glicoproteínas de Membrana , Ovário/crescimento & desenvolvimento , Tephritidae , Animais , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Interferência de RNA , Tephritidae/genética , Tephritidae/crescimento & desenvolvimento
7.
J Insect Sci ; 20(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927595

RESUMO

Bactrocera dorsalis (Hendel) is a notorious insect pest that attacks diverse vegetables and fruits worldwide. The sterile insect technique has been developed as an environmentally friendly and effective control method that depends on the mass production of target flies. Because dietary yeast (protein) and sucrose (carbohydrate) are important in adult diets, yeast:sucrose (Y:S) mixtures are crucial for the mass-rearing of B. dorsalis. In this study, we found adult diets with different ratios of yeast to sucrose-influenced fecundity, and an extremely high or low Y:S ratios significantly decreased egg production of B. dorsalis. Additionally, the maximum oviposition efficiency was realized at dietary yeast to sucrose ratios of 1:1 and 1:3, suggesting their potential use to produce more eggs for the mass production of B. dorsalis. Here, new gel diets having different yeast concentrations (g/L water) were also assessed for rearing B. dorsalis larvae. Gel diets containing 20 g/L yeast led to a higher pupation, pupal weight and adult eclosion rate, and a shorter developmental time than other yeast concentrations. Moreover, the present gel diet also resulted in greater pupal production and adult emergence rates than previously used liquid and solid artificial diets, revealing that it is suitable for rearing B. dorsalis larvae. This research provides a useful reference on artificial diets mixtures for mass rearing B. dorsalis, which is critical for employing the sterile insect technique.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos/métodos , Oviposição , Tephritidae/fisiologia , Animais , Dieta , Feminino , Fertilidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Oviposição/efeitos dos fármacos , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Sacarose/administração & dosagem , Tephritidae/efeitos dos fármacos , Tephritidae/crescimento & desenvolvimento , Fermento Seco/administração & dosagem
8.
BMC Genomics ; 19(1): 693, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241467

RESUMO

BACKGROUND: The oriental fruit fly, Bactrocera dorsalis (Hendel) has been considered to be one of the most important agricultural pest around the world. As a holometabolous insect, larvae must go through a metamorphosis process with dramatic morphological and structural changes to complete their development. To better understand the molecular mechanisms of these changes, RNA-seq of B. dorsalis from wandering stage (WS), late wandering stage (LWS) and white puparium stage (WPS) were performed. RESULTS: In total, 11,721 transcripts were obtained, out of which 1914 genes (578 up-regulated and 1336 down-regulated) and 2047 genes (655 up-regulated and 1392 down-regulated) were found to be differentially expressed between WS and LWS, as well as between WS and WPS, respectively. Of these DEGs, 1862 and 1996 genes were successfully annotated in various databases. The analysis of RNA-seq data together with qRT-PCR validation indicated that during this transition, the genes in the oxidative phosphorylation pathway, and genes encoding P450s, serine protease inhibitor, and cuticular proteins were down-regulated, while the serine protease genes were up-regulated. Moreover, we found some 20-hydroxyecdysone (20E) biosynthesis and signaling pathway genes had a higher expression in the WS, while the genes responsible for juvenile hormone (JH) synthesis, degradation, signaling and transporter pathways were down-regulated, suggesting these genes might be involved in the process of larval pupariation in B. dorsalis. For the chitinolytic enzymes, the genes encoding chitinases (chitinase 2, chitinase 5, chitinase 8, and chitinase 10) and chitin deacetylase might play the crucial role in the degradation of insect chitin with their expressions significantly increased during the transition. Here, we also found that chitin synthase 1A might be involved in the chitin synthesis of cuticles during the metamorphosis in B. dorsalis. CONCLUSIONS: Significant changes at transcriptional level were identified during the larval pupariation of B. dorsalis. Importantly, we also obtained a vast quantity of RNA-seq data and identified metamorphosis associated genes, which would all help us to better understand the molecular mechanism of metamorphosis process in B. dorsalis.


Assuntos
Tephritidae/crescimento & desenvolvimento , Tephritidae/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Insetos/genética , Larva/genética , Metamorfose Biológica , Análise de Sequência de RNA
9.
Front Physiol ; 9: 660, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915542

RESUMO

Corazonin (Crz) is a widely distributed neuropeptide (or neurohormone) in insects with diverse physiological functions. The present study aimed to reveal the functions of Crz and its receptor (CrzR) in the regulation of sexual behavior and fertility in male Bactrocera dorsalis. Tissue-specific expression analyses showed that the BdCrz transcript was most abundant in the central nervous system (CNS), and the BdCrzR transcript was most abundant in both the fat body and CNS. Immunochemical localization confirmed that three pairs of Crz-immunoreactive neurons are located in the dorsolateral protocerebrum region of male adult brain. Importantly, RNAi-mediated Crz knockdown lengthened mating duration in males, and knockdown of Crz or CrzR strongly decreased male fertility in the following 3 days, while the courtship behavior and mating efficiency were not affected. The reduced number of sperm in the reproductive organs of mated females indicated that Crz knockdown in males reduced sperm transfer. The findings of this study indicate that Crz contributes to the reproductive physiology of the oriental fruit fly B. dorsalis by regulating sperm transfer in male adults.

10.
Insect Biochem Mol Biol ; 97: 53-70, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29729388

RESUMO

Cuticular proteins (CPs) are essential components of the insect cuticle as they create a structural and protective shield and may have a role in insect development. In this paper, we studied the CPs in the oriental fruit fly (Bactrocera dorsalis), one of the most economically important pests in the Tephritidae family around the world. The availability of a complete genome sequence (NCBI Assembly: ASM78921v2) allowed the identification of 164 CP genes in B. dorsalis. Comparative analysis of the CPs in B. dorsalis with those in the model insect Drosophila melanogaster and the closely related Ceratitis capitata, and CPs from mosquitoes, Lepidoptera, Hymenoptera and Coleoptera identified Diptera-specific genes and cuticle development patterns. Analysis of their evolutionary relationship revealed that some CP families had evolved according to the phylogeny of the different insect species, while others shared a closer relationship based on domain architecture. Subsequently, transcriptome analysis showed that while most of the CPs (60-100% of the family members) are expressed in the epidermis, some were also present in internal organs such as the fat body and the reproductive organs. Furthermore, the study of the expression profiles throughout development revealed a profound change in the expression of CPs during the formation of the puparium (pupariation). Further analysis of the expression profiles of the CPAP3 genes under various environmental stresses revealed them to be involved in the response to pesticides and arid and extreme temperatures conditions. In conclusion, the data provide a particular overview of CPs and their evolutionary and transcriptional dynamics, and in turn they lay a molecular foundation to explore their roles in the unique developmental process of insect metamorphosis and stress responses.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos , Estresse Fisiológico , Tephritidae , Animais , Estudo de Associação Genômica Ampla , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Anotação de Sequência Molecular , Tephritidae/genética , Tephritidae/crescimento & desenvolvimento
11.
Pest Manag Sci ; 74(3): 569-578, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28941310

RESUMO

BACKGROUND: The oriental fruit fly Bactrocera dorsalis (Hendel), a notorious world pest infesting fruits and vegetables, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH) that is required for cuticle tanning (sclerotization and pigmentation) in many insects, could be a potential target in controlling B. dorsalis. RESULTS: We cloned TH cDNA (BdTH) of B. dorsalis. The complete open reading frame of BdTH (KY911196) was 1737 bp in length, encoding a protein of 578 amino acids. Quantitative real-time PCR confirmed that BdTH was highly expressed in the epidermis of 3rd instar larvae, and its expression increased prior to pupation, suggesting a role in larval-pupal cuticle tanning. When we injected dsBdTH or 3-iodo-tyrosine (3-IT) as a TH inhibitor or fed insect diet supplemented with 3-IT, there was significant impairment of larval-pupal cuticle tanning and a severe obstacle to eclosion in adults followed by death in most. Furthermore, injection of Escherichia coli into larvae fed 3-IT resulted in 92% mortality and the expressions of four antimicrobial peptide genes were significantly downregulated. CONCLUSION: These results suggest that BdTH might play a critical role in larval-pupal tanning and immunity of B. dorsalis, and could be used as a potential novel target for pest control. © 2017 Society of Chemical Industry.


Assuntos
Imunidade Inata , Proteínas de Insetos/genética , Tephritidae/genética , Tephritidae/imunologia , Tirosina 3-Mono-Oxigenase/genética , Sequência de Aminoácidos , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Filogenia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/imunologia , Alinhamento de Sequência , Tephritidae/crescimento & desenvolvimento , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Insect Biochem Mol Biol ; 90: 1-13, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28919559

RESUMO

Energy homeostasis requires continuous compensation for fluctuations in energy expenditure and availability of food resources. In insects, energy mobilization is under control of the adipokinetic hormone (AKH) where it is regulating the nutritional status by supporting the mobilization of lipids. In this study, we characterized the gene coding for the AKH receptor (AKHR) and investigated its function in the oriental fruit fly (Bactrocera dorsalis) that is economically one of the most important pest insects of tropical and subtropical fruit. Bacdo-AKHR is a typical G protein-coupled receptor (GPCR) and phylogenetic analysis confirmed that Bacdo-AKHR is closely related to insect AKHRs from other species. When expressed in Chinese hamster ovary (CHO) cells, Bacdo-AKHR exhibited a high sensitivity and selectivity for AKH peptide (EC50 = 19.3 nM). Using qPCR, the developmental stage and tissue-specific expression profiles demonstrated that Bacdo-AKHR was highly expressed in both the larval and adult stages, and also specifically in the fat body and midgut of the adult with no difference in sex. To investigate the role of AKHR in B. dorsalis, RNAi assays were performed with dsRNA against Bacdo-AKHR in adult flies of both sexes and under starvation and feeding condition. As major results, the knockdown of this gene resulted in triacylglycerol (TAG) accumulation. With RNAi-males, we observed a severe decrease in their sexual courtship activity when starved, but there was a partial rescue in copulation when refed. Also in RNAi-males, the tethered-flight duration declined compared with the control group when starved, which is confirming the dependency on energy metabolism. In RNAi-females, the sexual behavior was not affected, but their fecundity was decreased. Our findings indicate an interesting role of AKHR in the sexual behavior of males specifically. The effects are associated with TAG accumulation, and we also reported that the conserved role of AKH-mediated system in B. dorsalis is nutritional state-dependent. Hence, we provided further understanding on the multiple functions of AKH/AKHR in B. dorsalis.


Assuntos
Hormônios de Inseto/metabolismo , Proteínas de Insetos/genética , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Comportamento Sexual Animal/fisiologia , Tephritidae/genética , Triglicerídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetulus , Feminino , Voo Animal/fisiologia , Privação de Alimentos , Expressão Gênica , Proteínas de Insetos/metabolismo , Metabolismo dos Lipídeos , Masculino , Ácido Pirrolidonocarboxílico/metabolismo , Interferência de RNA , Análise de Sequência de DNA , Tephritidae/metabolismo
13.
BMC Evol Biol ; 17(1): 194, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814277

RESUMO

BACKGROUND: Diet composition (yeast:carbohydrate ratio) is an important determinant of growth, development, and reproduction. Recent studies have shown that decreased yeast intake elicits numerous transcriptomic changes and enhances somatic maintenance and lifespan, which in turn reduces reproduction in various insects. However, our understanding of the responses leading to a decrease in yeast ratio to 0% is limited. RESULTS: In the present study, we investigated the effects of a sugar-only diet (SD) on the gene expression patterns of the oriental fruit fly, Bactrocera dorsalis (Hendel), one of the most economically important pests in the family Tephritidae. RNA sequencing analyses showed that flies reared on an SD induced significant changes in the expression levels of genes associated with specific metabolic as well as cell growth and death pathways. Moreover, the observed upregulated genes in energy production and downregulated genes associated with reproduction suggested that SD affects somatic maintenance and reproduction in B. dorsalis. As expected, we observed that SD altered B. dorsalis phenotypes by significantly increasing stress (starvation and desiccation) resistance, decreasing reproduction, but did not extend lifespan compared to those that received a normal diet (ND) regime. In addition, administration of an SD resulted in a reduction in antioxidant enzyme activities and an increase in MDA concentrations, thereby suggesting that antioxidants cannot keep up with the increase in oxidative damage induced by SD regime. CONCLUSIONS: The application of an SD diet induces changes in phenotypes, antioxidant responses, and gene expressions in B. dorsalis. Previous studies have associated extended lifespan with reduced fecundity. The current study did not observe a prolongation of lifespan in B. dorsalis, which instead incurred oxidative damage. The findings of the present study improve our understanding of the molecular, biochemical, and phenotypic response of B. dorsalis to an SD diet.


Assuntos
Antioxidantes/metabolismo , Dieta , Regulação da Expressão Gênica , Açúcares/farmacologia , Tephritidae/genética , Animais , Dessecação , Regulação para Baixo/genética , Drosophila/genética , Feminino , Perfilação da Expressão Gênica , Longevidade , Ovário/crescimento & desenvolvimento , Fosforilação Oxidativa , Fenótipo , Análise de Sequência de RNA , Inanição/genética , Tephritidae/efeitos dos fármacos , Regulação para Cima/genética
14.
Int J Mol Sci ; 18(7)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653986

RESUMO

The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is an economically important agricultural pest that is difficult to prevent and control. Scopoletin is a botanical coumarin derivative that targets Ca2+-ATPase to exert a strong acaricidal effect on carmine spider mites. In this study, the full-length cDNA sequence of a plasma membrane Ca2+-ATPase 1 gene (TcPMCA1) was cloned. The sequence contains an open reading frame of 3750 bp and encodes a putative protein of 1249 amino acids. The effects of scopoletin on TcPMCA1 expression were investigated. TcPMCA1 was significantly upregulated after it was exposed to 10%, 30%, and 50% of the lethal concentration of scopoletin. Homology modeling, molecular docking, and three-dimensional quantitative structure-activity relationships were then studied to explore the relationship between scopoletin structure and TcPMCA1-inhibiting activity of scopoletin and other 30 coumarin derivatives. Results showed that scopoletin inserts into the binding cavity and interacts with amino acid residues at the binding site of the TcPMCA1 protein through the driving forces of hydrogen bonds. Furthermore, CoMFA (comparative molecular field analysis)- and CoMSIA (comparative molecular similarity index analysis)-derived models showed that the steric and H-bond fields of these compounds exert important influences on the activities of the coumarin compounds.Notably, the C3, C6, and C7 positions in the skeletal structure of the coumarins are the most suitable active sites. This work provides insights into the mechanism underlying the interaction of scopoletin with TcPMCA1. The present results can improve the understanding on plasma membrane Ca2+-ATPase-mediated (PMCA-mediated) detoxification of scopoletin and coumarin derivatives in T. cinnabarinus, as well as provide valuable information for the design of novel PMCA-inhibiting acaricides.


Assuntos
Acaricidas/toxicidade , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Escopoletina/toxicidade , Tetranychidae/enzimologia , Regulação para Cima/efeitos dos fármacos , Acaricidas/química , Animais , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Simulação de Acoplamento Molecular , Filogenia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Relação Quantitativa Estrutura-Atividade , Escopoletina/química , Tetranychidae/efeitos dos fármacos , Tetranychidae/genética
15.
Sci Rep ; 7(1): 1988, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512316

RESUMO

In this study, we investigated the effects of dietary restriction (DR) and variable diets on phenotypes and gene expression in oriental fruit fly, Bactrocera dorsalis (Hendel), one of the most economically important pests in the family Tephritidae around the world. As expected, we found that DR altered the B. dorsalis phenotypes by significantly increasing stress resistance and lifespan, but reduced egg production when compared with the control diet. The results suggested a trade-off between reproduction versus somatic maintenance (stress resistance) and lifespan in B. dorsalis. Diet also had a significant effect on hatchability, and DR could increase the egg hatching success of B. dorsalis. Furthermore, DR up-regulated metabolic pathways involved in energy homeostasis and down-regulated pathways in egg production, which might mediate trade-offs between somatic maintenance and reproduction under DR regimes. The gene expression profiles in response to the acute dietary switches indicated that the digestive and metabolic pathways maybe involved in the adaptability of flies to variable dietary resources. In summary, the research facilitates a better understanding of the molecular mechanisms responsible for the B. dorsalis' phenotypic adjustments to the different qualities of the available diets.


Assuntos
Adaptação Biológica , Regulação da Expressão Gênica , Tephritidae/genética , Transcriptoma , Animais , Temperatura Baixa , Biologia Computacional/métodos , Fertilidade , Estudos de Associação Genética , Temperatura Alta , Reprodução , Inanição
16.
Front Physiol ; 8: 77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261106

RESUMO

Corazonin (Crz) is a neuropeptide hormone, but also a neuropeptide modulator that is internally released within the CNS, and it has a widespread distribution in insects with diverse physiological functions. Here, we identified and cloned the cDNAs of Bactrocera dorsalis that encode Crz and its receptor CrzR. Mature BdCrz has 11 residues with a unique Ser11 substitution (instead of the typical Asn) and a His in the evolutionary variable position 7. The BdCrzR cDNA encodes a putative protein of 608 amino acids with 7 putative transmembrane domains, typical for the structure of G-protein-coupled receptors. When expressed in Chinese hamster ovary (CHO) cells, the BdCrzR exhibited a high sensitivity and selectivity for Crz (EC50 ≈ 52.5 nM). With qPCR, the developmental stage and tissue-specific expression profiles in B. dorsalis demonstrated that both BdCrz and BdCrzR were highly expressed in the larval stage, and BdCrzR peaked in 2-day-old 3rd-instar larvae, suggesting that the BdCrzR may play an important role in the larval-pupal transition behavior. Immunochemical localization confirmed the production of Crz in the central nervous system (CNS), specifically by a group of three neurons in the dorso-lateral protocerebrum and eight pairs of lateral neurons in the ventral nerve cord. qPCR analysis located the BdCrzR in both the CNS and epitracheal gland, containing the Inka cells. Importantly, dsRNA-BdCrzR-mediated gene-silencing caused a delay in larval-pupal transition and pupariation, and this phenomenon agreed with a delayed expression of tyrosine hydroxylase and dopa-decarboxylase genes. We speculate that CrzR-silencing blocked dopamine synthesis, resulting in the inhibition of pupariation and cuticular melanization. Finally, injection of Crz in head-ligated larvae could rescue the effects. These findings provide a new insight into the roles of Crz signaling pathway components in B. dorsalis and support an important role of CrzR in larval-pupal transition and pupariation behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...