Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281534

RESUMO

Fusarium graminearum is a dominant phytopathogenic fungus causing Fusarium head blight (FHB) in cereal crops. Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam (PoTeM) isolated from Lysobacter enzymogenes that exhibits strong antifungal activity against F. graminearum. HSAF significantly reduces the DON production and virulence of F. graminearum. Importantly, HSAF exhibited no cross-resistance to carbendazim, phenamacril, tebuconazole and pydiflumetofen. However, the target protein of HSAF in F. graminearum is unclear. In this study, the oxysterol-binding protein FgORP1 was identified as the potential target of HSAF using surface plasmon resonance (SPR) combined with RNA-sequence (RNA-seq). The RNA-seq results showed cell membrane and ergosterol biosynthesis were significantly impacted by HSAF in F. graminearum. Molecular docking showed that HSAF binds with arginine 1205 and glutamic acid 1212, which are located in the oxysterol-binding domain of FgORP1. The two amino acids in FgORP1 are responsible for HSAF resistance in F. graminearum though site-directed mutagenesis. Furthermore, deletion of FgORP1 led to significantly decreased sensitivity to HSAF. Additionally, FgORP1 regulates the mycelial growth, conidiation, DON production, ergosterol biosynthesis and virulence in F. graminearum. Overall, our findings revealed the mode of action of HSAF against F. graminearum, indicating that HSAF is a promising fungicide for controlling FHB.


Assuntos
Fusarium , Oxisteróis , Antifúngicos/química , Fusarium/fisiologia , Temperatura Alta , Simulação de Acoplamento Molecular , Membrana Celular/metabolismo , Ergosterol , Doenças das Plantas/microbiologia
2.
J Agric Food Chem ; 71(41): 15003-15016, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812568

RESUMO

Heat-stable antifungal factor (HSAF) isolated from Lysobacter enzymogenes is considered a potential biocontrol agent. However, the target of HSAF in phytopathogenic fungi remains unclear. In this study, we investigated the target of HSAF in Valsa pyri that causes fatal pear Valsa canker. Thirty-one HSAF-binding proteins were captured and identified by surface plasmon resonance (SPR) and high-performance liquid chromatography-mass spectrometry (LC-MS/MS), and 11 deletion mutants were obtained. Among these mutants, only ΔVpVEB1 showed decreased sensitivity to HSAF. Additionally, ΔVpVEB1 exhibited significantly reduced virulence in V. pyri. Molecular docking and SPR results revealed that HSAF bound to threonine 569 and glycine 570 of VpVeb1, which are crucial for AAA ATPase activity. Another study showed that HSAF could decrease the ATPase activity of VpVeb1, leading to the reduced virulence of V. pyri. Taken together, this study first identified the potential target of HSAF in fungi. These findings will help us better understand the model of action of HSAF to fungi.


Assuntos
Antifúngicos , Proteínas de Bactérias , Antifúngicos/farmacologia , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Fungos/metabolismo
3.
Mol Plant Pathol ; 24(5): 452-465, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829260

RESUMO

Avoiding the host defence system is necessary for the survival of pathogens. However, the mechanisms by which pathogenic bacteria sense and resist host defence signals are still unknown. Sulforaphane (SFN) is a secondary metabolite of crucifers. It not only plays an important role in maintaining the local defence response but also directly inhibits the growth of some pathogens. In this study, we identified a key SFN tolerance-related gene, saxF, in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers. More interestingly, we found that the transcription of saxF was regulated by the novel transcription factor SFN-sensing transcription factor (SstF). As a LysR family transcription factor, SstF can sense SFN and regulate the expression of saxF cluster genes to increase SFN resistance by directly binding to the promoter of saxF. In addition, we found that SstF and saxF also play an important role in positively regulating the virulence of Xcc. Collectively, our results illustrate a previously unknown mechanism by which Xcc senses the host defence signal SFN and activates the expression of SFN tolerance-related genes to increase virulence. Therefore, this study provides a remarkable result; that is, during pathogen-plant co-evolution, new functions of existing scaffolds are activated, thus improving the proficiency of the pathogenic mechanism.


Assuntos
Fatores de Transcrição , Xanthomonas campestris , Virulência/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Isotiocianatos/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia
4.
Mol Plant Pathol ; 23(10): 1508-1523, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35942507

RESUMO

Plant secondary metabolites perform numerous functions in the interactions between plants and pathogens. However, little is known about the precise mechanisms underlying their contribution to the direct inhibition of pathogen growth and virulence in planta. Here, we show that the secondary metabolite sulforaphane (SFN) in crucifers inhibits the growth, virulence, and ability of Xanthomonas species to adapt to oxidative stress, which is essential for the successful infection of host plants by phytopathogens. The transcription of oxidative stress detoxification-related genes (catalase [katA and katG] and alkylhydroperoxide-NADPH oxidoreductase subunit C [ahpC]) was substantially inhibited by SFN in Xanthomonas campestris pv. campestris (Xcc), and this phenomenon was most obvious in sax gene mutants sensitive to SFN. By performing microscale thermophoresis (MST) and electrophoretic mobility shift assay (EMSA), we observed that SFN directly bound to the virulence-related redox-sensing transcription factor OxyR and weakened the ability of OxyR to bind to the promoters of oxidative stress detoxification-related genes. Collectively, these results illustrate that SFN directly targets OxyR to inhibit the bacterial adaptation to oxidative stress, thereby decreasing bacterial virulence. Interestingly, this phenomenon occurs in multiple Xanthomonas species. This study provides novel insights into the molecular mechanisms by which SFN limits Xanthomonas adaptation to oxidative stress and virulence, and the findings will facilitate future studies on the use of SFN as a biopesticide to control Xanthomonas.


Assuntos
Xanthomonas campestris , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Isotiocianatos , Estresse Oxidativo , Sulfóxidos , Virulência/genética , Xanthomonas campestris/metabolismo
5.
J Fungi (Basel) ; 8(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35050017

RESUMO

Colletotrichum fructicola, the causal agent of pear anthracnose, causes significant annual economic losses. Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction pathways that play a crucial role in mediating cellular responses to environmental and host signals in plant pathogenic fungi. In this study, we identified an ortholog of the FUS3/KSS1-related MAPK gene, CfMK1, and characterized its function in C. fructicola. The Cfmk1 deletion mutants exhibited poorly developed aerial hyphae, autolysis, no conidial mass or perithecia on solid plates. However, the conidiation of the Cfmk1 mutant in PDB liquid medium was normal compared with that of the wild type (WT). Conidia of the Cfmk1 mutant exhibited a reduced germination rate on glass slides or plant surfaces. The Cfmk1 deletion mutants were unable to form appressoria and lost the capacity to penetrate plant epidermal cells. The ability of the Cfmk1 mutants to infect pear leaves and fruit was severely reduced. Moreover, RNA sequencing (RNA-seq) analysis of the WT and Cfmk1 mutant was performed, and the results revealed 1886 upregulated and 1554 downregulated differentially expressed genes (DEGs) in the mutant. The DEGs were significantly enriched in cell wall and pathogenesis terms, which was consistent with the defects of the Cfmk1 mutant in cell wall integrity and plant infection. Overall, our data demonstrate that CfMK1 plays critical roles in the regulation of aerial hyphal growth, asexual and sexual reproduction, autolysis, appressorium formation, and pathogenicity.

6.
Commun Biol ; 4(1): 1131, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561536

RESUMO

Soil bacteria often harbour various toxins to against eukaryotic or prokaryotic. Diffusible signal factors (DSFs) represent a unique group of quorum sensing (QS) chemicals that modulate interspecies competition in bacteria that do not produce antibiotic-like molecules. However, the molecular mechanism by which DSF-mediated QS systems regulate antibiotic production for interspecies competition remains largely unknown in soil biocontrol bacteria. In this study, we find that the necessary QS system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase (PDE), regulates the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF), which does not appear to depend on the enzymatic activity. Interestingly, we show that RpfG interacts with three hybrid two-component system (HyTCS) proteins, HtsH1, HtsH2, and HtsH3, to regulate HSAF production in Lysobacter. In vitro studies show that each of these proteins interacted with RpfG, which reduced the PDE activity of RpfG. Finally, we show that the cytoplasmic proportions of these proteins depended on their phosphorylation activity and binding to the promoter controlling the genes implicated in HSAF synthesis. These findings reveal a previously uncharacterized mechanism of DSF signalling in antibiotic production in soil bacteria.


Assuntos
Antifúngicos/metabolismo , GMP Cíclico/análogos & derivados , Lysobacter/fisiologia , Percepção de Quorum/fisiologia , GMP Cíclico/metabolismo , Lysobacter/metabolismo , Microbiologia do Solo
7.
Front Microbiol ; 12: 618513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679640

RESUMO

Antibiotic-producing microorganisms have developed several self-resistance mechanisms to protect them from autotoxicity. Transporters belonging to the resistance- nodulation-division (RND) superfamily commonly confer multidrug resistance in Gram-negative bacteria. Phenazines are heterocyclic, nitrogen-containing and redox-active compounds that exhibit diverse activities. We previously identified six phenazines from Lysobacter antibioticus OH13, a soil bacterium emerging as a potential biocontrol agent. Among these phenazines, myxin, a di-N-oxide phenazine, exhibited potent activity against a variety of microorganisms. In this study, we identified a novel RND efflux pump gene cluster, designated lexABC, which is located far away in the genome from the myxin biosynthesis gene cluster. We found a putative LysR-type transcriptional regulator encoding gene lexR, which was adjacent to lexABC. Deletion of lexABC or lexR gene resulted in significant increasing susceptibility of strains to myxin and loss of myxin production. The results demonstrated that LexABC pump conferred resistance against myxin. The myxin produced at lower concentrations in these mutants was derivatized by deoxidation and O-methylation. Furthermore, we found that the abolishment of myxin with deletion of LaPhzB, which is an essential gene in myxin biosynthesis, resulted in significant downregulation of the lexABC. However, exogenous supplementation with myxin to LaPhzB mutant could efficiently induce the expression of lexABC genes. Moreover, lexR mutation also led to decreased expression of lexABC, which indicates that LexR potentially positively modulated the expression of lexABC. Our findings reveal a resistance mechanism against myxin of L. antibioticus, which coordinates regulatory pathways to protect itself from autotoxicity.

8.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32144106

RESUMO

In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia colifadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2 In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenesIMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/genética , Lysobacter/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lysobacter/metabolismo , Oxirredução , Alinhamento de Sequência
9.
J Agric Food Chem ; 66(3): 630-636, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29283262

RESUMO

Among Lysobacter species, Lysobacter antibioticus has been demonstrated to be an interesting source of antimicrobial metabolites for the biocontrol of plant diseases. Although the antibacterial activity was attributed to N-oxide phenazines, the active compounds involved in the antifungal function remained unknown. In this work, an antifungal compound was isolated and identified as p-aminobenzoic acid (pABA). Antifungal activity screening revealed that pABA shows activity against a number of plant pathogens. The genes involved in the synthetic route of this compound in OH13 were identified. Further, the production of pABA was optimized by modification of the carbon source using engineered L. antibioticus OH13 strains.


Assuntos
Ácido 4-Aminobenzoico/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Lysobacter/metabolismo , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/farmacologia , Fungos/efeitos dos fármacos , Fungos/fisiologia , Fungicidas Industriais/química , Lysobacter/química , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...