Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Proteomics ; 237: 104145, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581353

RESUMO

Citrus junos is a widely used citrus grafting rootstock in china because of its excellent tolerance to cold stress. However, the physiological and molecular mechanisms underlying this process remain unknown. In this study, physiological and tandem mass tag-based proteomic analyses were performed to elucidate the mechanism of the Citrus junos response to cold stress. Physiological data showed that severe cold stress decreased photosynthetic parameters and caused cell membrane damage and membrane lipid peroxidation in Citrus junos leaves compared to the control. A total of 6, 678 distinct proteins species were identified, and 413 proteins species were significantly differentially accumulated in the leaves of Citrus junos seedling after cold stress. Bioinformatics analysis revealed that the differentially abundance protein species mainly related to the starch and sucrose metabolism, secondary metabolites biosynthesis and phenylpropanoid biosynthesis in the leaves of Citrus junos seedling after cold stress. Further physiological assays showed that the contents of soluble starch, fructose, glucose and phenols were significantly increased in Citrus junos leaves after cold stress. Collectively, our data reveals that sugar and secondary metabolism could play important roles in Citrus junos in response to cold stress.


Assuntos
Citrus , China , Resposta ao Choque Frio , Proteínas de Plantas , Proteômica , Metabolismo Secundário , Estresse Fisiológico , Açúcares
2.
Front Plant Sci ; 11: 1283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973842

RESUMO

In a previous study, we found that H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and by regulating H2S metabolism and the oxidative stress response. However, little is known about the molecular mechanisms behind H2S-regulated salt-stress tolerance in cucumber. Here, an integrated transcriptomic and proteomic analysis based on RNA-seq and 2-DE was used to investigate the global mechanism underlying H2S-regulated salt-stress tolerance. In total, 11,761 differentially expressed genes (DEGs) and 61 differentially expressed proteins (DEPs) were identified. Analysis of the pathways associated with the DEGs showed that salt stress enriched expression of genes in primary and energy metabolism, such as photosynthesis, carbon metabolism and biosynthesis of amino acids. Application of H2S significantly decreased these DEGs but enriched DEGs related to plant-pathogen interaction, sulfur-containing metabolism, cell defense, and signal transduction pathways. Notably, changes related to sulfur-containing metabolism and cell defense were also observed through proteome analysis, such as Cysteine synthase 1, Glutathione S-transferase U25-like, Protein disulfide-isomerase, and Peroxidase 2. We present the first global analysis of the mechanism underlying H2S regulation of salt-stress tolerance in cucumber through tracking changes in the expression of specific proteins and genes.

3.
Front Plant Sci ; 10: 678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214215

RESUMO

Salinity stress from soil or irrigation water can significantly limit the growth and development of plants. Emerging evidence suggests that hydrogen sulfide (H2S), as a versatile signal molecule, can ameliorate salt stress-induced adverse effects. However, the possible physiological mechanism underlying H2S-alleviated salt stress in cucumber remains unclear. Here, a pot experiment was conducted with an aim to examine the possible mechanism of H2S in enhancement of cucumber salt stress tolerance. The results showed that H2S ameliorated salt-induced growth inhibition and alleviated the reduction in photosynthetic attributes, chlorophyll fluorescence and stomatal parameters. Meanwhile H2S increased the endogenous H2S level concomitant with increased activities of D/L-cysteine desulfhydrase and ß-cyanoalanine synthase and decreased activities of O-acetyl-L-serine(thiol)lyase under excess NaCl. Notably, H2S maintained Na+ and K+ homeostasis via regulation of the expression of PM H+-ATPase, SOS1 and SKOR at the transcriptional level under excess NaCl. Moreover, H2S alleviated salt-induced oxidative stress as indicated by lowered lipid peroxidation and reactive oxygen species accumulation through an enhanced antioxidant system. Altogether, these results demonstrated that application of H2S could protect cucumber seedlings against salinity stress, likely by keeping the Na+/K+ balance, controlling the endogenous H2S level by regulating the H2S synthetic and decomposition enzymes, and preventing oxidative stress by enhancing the antioxidant system under salinity stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...