Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(7): 8624-8633, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32574033

RESUMO

Optical imaging with nanoscale resolution and a large field of view is highly desirable in many research areas. Unfortunately, it is challenging to achieve these two features simultaneously while using a conventional microscope. An objective lens with a low numerical aperture (NA) has a large field of view but poor resolution. In contrast, a high NA objective lens will have a higher resolution but reduced field of view. In an effort to close the gap between these trade-offs, we introduce an acoustofluidic scanning nanoscope (AS-nanoscope) that can simultaneously achieve high resolution with a large field of view. The AS-nanoscope relies on acoustofluidic-assisted scanning of multiple microsized particles. A scanned 2D image is then compiled by processing the microparticle images using an automated big-data image algorithm. The AS-nanoscope has the potential to be integrated into a conventional microscope or could serve as a stand-alone instrument for a wide range of applications where both high resolution and large field of view are required.

2.
Cell Rep ; 16(12): 3181-3194, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653684

RESUMO

B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.


Assuntos
Proteínas de Transporte/genética , Senescência Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Proteínas Nucleares/genética , Animais , Quinase 6 Dependente de Ciclina/biossíntese , Proteínas de Ligação a DNA , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Repressoras
3.
Proc Natl Acad Sci U S A ; 110(16): 6518-23, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576758

RESUMO

Reactivation of fetal hemoglobin (HbF) in adults ameliorates the severity of the common ß-globin disorders. The transcription factor BCL11A is a critical modulator of hemoglobin switching and HbF silencing, yet the molecular mechanism through which BCL11A coordinates the developmental switch is incompletely understood. Particularly, the identities of BCL11A cooperating protein complexes and their roles in HbF expression and erythroid development remain largely unknown. Here we determine the interacting partner proteins of BCL11A in erythroid cells by a proteomic screen. BCL11A is found within multiprotein complexes consisting of erythroid transcription factors, transcriptional corepressors, and chromatin-modifying enzymes. We show that the lysine-specific demethylase 1 and repressor element-1 silencing transcription factor corepressor 1 (LSD1/CoREST) histone demethylase complex interacts with BCL11A and is required for full developmental silencing of mouse embryonic ß-like globin genes and human γ-globin genes in adult erythroid cells in vivo. In addition, LSD1 is essential for normal erythroid development. Furthermore, the DNA methyltransferase 1 (DNMT1) is identified as a BCL11A-associated protein in the proteomic screen. DNMT1 is required to maintain HbF silencing in primary human adult erythroid cells. DNMT1 haploinsufficiency combined with BCL11A deficiency further enhances γ-globin expression in adult animals. Our findings provide important insights into the mechanistic roles of BCL11A in HbF silencing and clues for therapeutic targeting of BCL11A in ß-hemoglobinopathies.


Assuntos
Proteínas de Transporte/farmacologia , Proteínas Correpressoras/metabolismo , Hemoglobina Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/farmacologia , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Cromatografia Líquida , Células Precursoras Eritroides , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Proteômica , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras , Espectrometria de Massas em Tandem , Globinas beta/metabolismo
4.
Dev Cell ; 23(4): 796-811, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23041383

RESUMO

Gene-distal enhancers are critical for tissue-specific gene expression, but their genomic determinants within a specific lineage at different stages of development are unknown. Here we profile chromatin state maps, transcription factor occupancy, and gene expression profiles during human erythroid development at fetal and adult stages. Comparative analyses of human erythropoiesis identify developmental stage-specific enhancers as primary determinants of stage-specific gene expression programs. We find that erythroid master regulators GATA1 and TAL1 act cooperatively within active enhancers but confer little predictive value for stage specificity. Instead, a set of stage-specific coregulators collaborates with master regulators and contributes to differential gene expression. We further identify and validate IRF2, IRF6, and MYB as effectors of an adult-stage expression program. Thus, the combinatorial assembly of lineage-specific master regulators and transcriptional coregulators within developmental stage-specific enhancers determines gene expression programs and temporal regulation of transcriptional networks in a mammalian genome.


Assuntos
Elementos Facilitadores Genéticos/genética , Eritropoese/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Cromatina/genética , Fator de Transcrição GATA1/metabolismo , Humanos , Fator Regulador 2 de Interferon/metabolismo , Fatores Reguladores de Interferon/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...