Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 53(12): 7943-7956, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37027771

RESUMO

Existing deep convolutional neural networks (CNNs) have recently achieved great success in pansharpening. However, most deep CNN-based pansharpening models are based on "black-box" architecture and require supervision, making these methods rely heavily on the ground-truth data and lose their interpretability for specific problems during network training. This study proposes a novel interpretable unsupervised end-to-end pansharpening network, called as IU2PNet, which explicitly encodes the well-studied pansharpening observation model into an unsupervised unrolling iterative adversarial network. Specifically, we first design a pansharpening model, whose iterative process can be computed by the half-quadratic splitting algorithm. Then, the iterative steps are unfolded into a deep interpretable iterative generative dual adversarial network (iGDANet). Generator in iGDANet is interwoven by multiple deep feature pyramid denoising modules and deep interpretable convolutional reconstruction modules. In each iteration, the generator establishes an adversarial game with the spatial and spectral discriminators to update both spectral and spatial information without ground-truth images. Extensive experiments show that, compared with the state-of-the-art methods, our proposed IU2PNet exhibits very competitive performance in terms of quantitative evaluation metrics and qualitative visual effects.

2.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7303-7317, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34111007

RESUMO

Hyperspectral (HS) pansharpening is of great importance in improving the spatial resolution of HS images for remote sensing tasks. HS image comprises abundant spectral contents, whereas panchromatic (PAN) image provides spatial information. HS pansharpening constitutes the possibility for providing the pansharpened image with both high spatial and spectral resolution. This article develops a specific pansharpening framework based on a generative dual-adversarial network (called PS-GDANet). Specifically, the pansharpening problem is formulated as a dual task that can be solved by a generative adversarial network (GAN) with two discriminators. The spatial discriminator forces the intensity component of the pansharpened image to be as consistent as possible with the PAN image, and the spectral discriminator helps to preserve spectral information of the original HS image. Instead of designing a deep network, PS-GDANet extends GANs to two discriminators and provides a high-resolution pansharpened image in a fraction of iterations. The experimental results demonstrate that PS-GDANet outperforms several widely accepted state-of-the-art pansharpening methods in terms of qualitative and quantitative assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...