Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786823

RESUMO

Electro-optic modulators (EOMs) are pivotal in bridging electrical and optical domains, essential for diverse applications including optical communication, microwave signal processing, sensing, and quantum technologies. However, achieving the trifecta of high-density integration, cost-effectiveness, and superior performance remains challenging within established integrated photonics platforms. Enter thin-film lithium niobate (LN), a recent standout with its inherent electro-optic (EO) efficiency, proven industrial performance, durability, and rapid fabrication advancements. This platform inherits material advantages from traditional bulk LN devices while offering a reduced footprint, wider bandwidths, and lower power requirements. Despite its recent introduction, commercial thin-film LN wafers already rival or surpass established alternatives like silicon and indium phosphide, benefitting from decades of research. In this review, we delve into the foundational principles and technical innovations driving state-of-the-art LN modulator demonstrations, exploring various methodologies, their strengths, and challenges. Furthermore, we outline pathways for further enhancing LN modulators and anticipate exciting prospects for larger-scale LN EO circuits beyond singular components. By elucidating the current landscape and future directions, we highlight the transformative potential of thin-film LN technology in advancing electro-optic modulation and integrated photonics.

2.
Opt Lett ; 49(6): 1413-1416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489413

RESUMO

Tunable optical filters at the chip scale play a crucial role in fulfilling the need for reconfigurability in channel routing, optical switching, and wavelength division multiplexing systems. In this Letter, we propose a tunable double notch filter on thin-film lithium niobate using dual microring architecture. This unique integrated filter is essential for complex photonic integrated circuits, along with multiple channels and various frequency spacing. With only one loaded voltage, the device demonstrates a wide frequency spacing tunability from 16.1 to 89.9 GHz by reversely tuning the resonances of the two microrings while the center wavelength between the two resonances remains unaltered. Moreover, by utilizing the pronounced electro-optic properties of lithium niobate associated with the tight light confined nanophotonic waveguides, the device demonstrates a spacing tunability of 0.82 GHz/V and a contrast of 10-16 dB. In addition, the device has an ultracompact footprint of 0.0248 mm2.

3.
Opt Lett ; 48(8): 1978-1981, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058621

RESUMO

Optical isolators are an essential component of photonic systems. Current integrated optical isolators have limited bandwidths due to stringent phase-matching conditions, resonant structures, or material absorption. Here, we demonstrate a wideband integrated optical isolator in thin-film lithium niobate photonics. We use dynamic standing-wave modulation in a tandem configuration to break Lorentz reciprocity and achieve isolation. We measure an isolation ratio of 15 dB and insertion loss below 0.5 dB for a continuous wave laser input at 1550 nm. In addition, we experimentally show that this isolator can simultaneously operate at visible and telecom wavelengths with comparable performance. Isolation bandwidths up to ∼100 nm can be achieved simultaneously at both visible and telecom wavelengths, limited only by the modulation bandwidth. Our device's dual-band isolation, high flexibility, and real-time tunability can enable novel non-reciprocal functionality on integrated photonic platforms.

4.
Opt Lett ; 47(6): 1506-1509, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290350

RESUMO

Squeezed light is a key quantum resource that enables quantum advantages for sensing, networking, and computing applications. The scalable generation and manipulation of squeezed light with integrated platforms are highly desired for the development of quantum technology with continuous variables. In this Letter, we demonstrate squeezed light generation with thin-film lithium niobate integrated photonics. Parametric down-conversion is realized with quasi-phase matching using ferroelectric domain engineering. With sub-wavelength mode confinement, efficient nonlinear processes can be observed with single-pass configuration. We measure 0.56 ± 0.09 dB quadrature squeezing (∼2.6 dB inferred on-chip). The single-pass configuration further enables the generation of squeezed light with large spectral bandwidth up to 7 THz. This work represents a significant step towards the on-chip implementation of continuous-variable quantum information processing.

5.
Opt Express ; 29(16): 26183-26190, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614929

RESUMO

Second-order optical nonlinearity is widely used for both classical and quantum photonic applications. Due to material dispersion and phase matching requirements, the polarization of optical fields is pre-defined during the fabrication. Only one type of phase matching condition is normally satisfied, and this limits the device flexibility. Here, we demonstrate that phase matching for both type-I and type-II second-order optical nonlinearity can be realized simultaneously in the same waveguide fabricated from thin-film lithium niobate. This is achieved by engineering the geometry dispersion to compensate for the material dispersion and birefringence. The simultaneous realization of both phase matching conditions is verified by the polarization dependence of second-harmonic generation. Correlated photons are also generated through parametric down conversion from the same device. This work provides a novel approach to realize versatile photonic functions with flexible devices.

6.
Sci Adv ; 5(10): eaav3140, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692653

RESUMO

Colloidal quantum dots (CQDs) are highly promising materials for light amplification thanks to their efficient photoluminescence, tunable emission wavelength and low-cost synthesis. Unfortunately, CQDs are suffering from band-edge state degeneracy which demands multiple excitons to achieve population inversion. As a result, non-radiative Auger recombination increases the lasing threshold and limits the gain lifetime. Here, benefiting from the negative charging, we demonstrate that the amplified spontaneous emission (ASE) threshold is controllable in a device where CQD film is exposed to an external electric field. Specifically, singly charged CQDs lower the threshold due to the preexisting electron in the conduction band, while strongly enhanced Auger recombination in doubly charged CQDs stymies the ASE. Experimental results and kinetic equation model show that ASE threshold reduces 10% even if our device only charges ~17% of the CQD population. Our results open new possibilities for controlling exciton recombination dynamics and achieving electrically pumped CQD lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...