Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 330: 110237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878462

RESUMO

Cryptosporidium parvum is an important zoonotic pathogen that is studied worldwide. MicroRNAs (miRNAs) act as post-transcriptional regulators and may play a key role in modulating host epithelial responses following Cryptosporidium infection. Our previous study has shown that C. parvum downregulates the expression of miR-181d through the p50-dependent TLRs/NF-κB pathway. However, the mechanism by which miR-181d regulates host cells in response to C. parvum infection remains unclear. The present study found that miR-181d downregulation inhibited cell apoptosis and increased parasite burden in HCT-8 cells after C. parvum infection. Bioinformatics analysis and luciferase reporter assays have shown that BCL2 was a target gene for miR-181d. Moreover, BCL2 overexpression and miR-181d downregulation had similar results. To further investigate the mechanism by which miR-181d regulated HCT-8 cell apoptosis during C. parvum infection, the expression of molecules involved in the intrinsic apoptosis pathway was detected. Bax, caspase-9, and caspase-3 expression was decreased at 4, 8, 12, and 24 hpi and upregulated at 36 and 48 hpi. Interfering with the expression of miR-181d or BCL2 significantly affected the expression of molecules in the intrinsic apoptosis pathway. These data indicated that miR-181d targeted BCL2 to regulate HCT-8 cell apoptosis and parasite burden in response to C. parvum infection via the intrinsic apoptosis pathway. These results allowed us to further understand the regulatory mechanisms of host miRNAs during Cryptosporidium infection, and provided a theoretical foundation for the design and development of anti-cryptosporidiosis drugs.


Assuntos
Apoptose , Criptosporidiose , Cryptosporidium parvum , MicroRNAs , Proteínas Proto-Oncogênicas c-bcl-2 , MicroRNAs/genética , MicroRNAs/metabolismo , Cryptosporidium parvum/genética , Cryptosporidium parvum/fisiologia , Humanos , Criptosporidiose/parasitologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Linhagem Celular Tumoral
2.
J Agric Food Chem ; 72(19): 10944-10957, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710505

RESUMO

Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Isoflavonas , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Sementes , Glycine max/metabolismo , Glycine max/genética , Glycine max/química , Isoflavonas/metabolismo , Isoflavonas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Sementes/genética , Sementes/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Parasitol Res ; 122(11): 2621-2630, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676305

RESUMO

Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Actinas/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Destrina/metabolismo , Criptosporidiose/parasitologia , Proteínas dos Microfilamentos/metabolismo
4.
Front Immunol ; 13: 967101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248866

RESUMO

Background: Childhood-onset asthma (COA) has become a major and growing problem worldwide and imposes a heavy socioeconomic burden on individuals and families; therefore, understanding the influence of early-life experiences such as breastfeeding on COA is of great importance for early prevention. Objectives: To investigate the impact of breastfeeding on asthma in children under 12 years of age and explore its role at two different stages of age in the UK Biobank cohort. Methods: A total of 7,157 COA cases and 158,253 controls were obtained, with information regarding breastfeeding, COA, and other important variables available through questionnaires. The relationship between breastfeeding and COA were examined with the logistic regression while adjusting for available covariates. In addition, a sibling analysis was performed on 398 pairs of siblings to explain unmeasured family factors, and a genetic risk score analysis was performed to control for genetic confounding impact. Finally, a power evaluation was conducted in the sibling data. Results: In the full cohort, it was identified that breastfeeding had a protective effect on COA (the adjusted odds ratio (OR)=0.875, 95% confidence intervals (CIs): 0.831~0.922; P=5.75×10-7). The impact was slightly pronounced in children aged 6-12 years (OR=0.852, 95%CIs: 0.794~0.914, P=7.41×10-6) compared to those aged under six years (OR=0.904, 95%CIs: 0.837~0.975, P=9.39×10-3), although such difference was not substantial (P=0.266). However, in the sibling cohort these protective effects were no longer significant largely due to inadequate samples as it was demonstrated that the power was only 23.8% for all children in the sibling cohort under our current setting. The protective effect of breastfeeding on COA was nearly unchanged after incorporating the genetic risk score into both the full and sibling cohorts. Conclusions: Our study offered supportive evidence for the protective effect of breastfeeding against asthma in children less than 12 years of age; however, sibling studies with larger samples were warranted to further validate the robustness our results against unmeasured family confounders. Our findings had the potential to encourage mothers to initiate and prolong breastfeeding.


Assuntos
Asma , Aleitamento Materno , Criança , Feminino , Humanos , Asma/epidemiologia , Asma/prevenção & controle , Bancos de Espécimes Biológicos , Reino Unido/epidemiologia
5.
Vet Parasitol ; 305: 109710, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462275

RESUMO

Cryptosporidium spp. can cause diarrhea and even death in humans and animals. Host microRNAs (miRNAs) play an important role in the post-transcriptional regulation of the innate immune response to Cryptosporidium infection. To study host miRNA activity in the innate immune response to C. parvum infection, we examined the expression of miR-181d in HCT-8 cells infected with C. parvum and found that it was significantly downregulated, while TLR2, TLR4, NF-κB, and myD88 involved in the TLR/NF-κB signaling pathway were significantly upregulated at the early stages of C. parvum infection. We transfected cells with short-interfering RNAs (siRNA) as TLR2, TLR4, and NF-κB inhibitors. Analysis by quantitative real-time polymerase chain reaction (qPCR) and western blot confirmed that C. parvum downregulates miR-181d expression via the p50 subunit-dependent TLR2/TLR4-NF-κB signaling pathway in HCT-8 cells. This study provides a new theoretical foundation to elucidate the regulatory mechanism of host miRNAs against Cryptosporidium infection.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , MicroRNAs , Animais , Cryptosporidium/genética , Cryptosporidium parvum/genética , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...