Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(37): 44184-44194, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499482

RESUMO

Photoelectrochemical (PEC) water splitting over TiO2 photoanodes is a promising strategy for hydrogen production due to its eco-friendly, energy-saving, and low-cost nature. However, the intrinsic drawbacks of TiO2, i.e., the too wide band gap and rapid exciton recombination, significantly limit further enhancement of its performance. Herein, we report a TiO2 nanotube array (TNA), which is implanted by Cu ions and decorated by polymeric carbon nitride (PCN) nanosheets, as a photoanode for the high-efficiency PEC water splitting. In such designed material, Cu-ion implantation can effectively tailor the electronic structure of TiO2, thus narrowing the band gap and enhancing the electronic conductivity. Meanwhile, the PCN decoration induces TiO2/PCN heterojunctions, enhancing the visible light absorption and accelerating the exciton separation. Upon this synergistic effect, the modified TNA photoanode shows significantly improved PEC capability. Its photocurrent density, solar-to-hydrogen efficiency, and applied bias photon-to-current efficiency achieve 1.89 mA cm-2 at 1.23 VRHE (V vs reversible hydrogen electrode), 2.31%, and 1.20% at 0.46 VRHE, respectively. Importantly, this modified TNA supported on a meshlike Ti substrate can be readily integrated with a perovskite solar cell to realize unassisted PEC water splitting.

2.
J Hazard Mater ; 299: 59-66, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26093355

RESUMO

TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment.


Assuntos
Antibacterianos/química , Prata/química , Titânio/química , Antibacterianos/farmacologia , Catálise , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Processos Fotoquímicos
3.
ACS Appl Mater Interfaces ; 6(7): 5137-43, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24621129

RESUMO

Figuring out the underlying relationship between the field emission (FE) properties and the ion irradiation induced structural change of carbon nanotubes (CNTs) is of great importance in developing high-performance field emitters. We report here the FE properties of Si and C ion irradiated CNTs with different irradiation doses. It is found that the FE performance of the ion irradiated CNTs ameliorates before and deteriorates after an irradiation-ion-species related dose. The improved FE properties are ascribed to the increased amount of defects, while the degraded FE performance is attributed to the great shape change of CNTs. These two structural changes are further characterized by a structural damage related parameter: dpa (displacement per atom), and the FE performance of the ion irradiated CNTs is surprisingly found to be mainly dependent on the dpa. The optimal dpa for FE of the ion irradiated CNTs is ∼0.60. We ascribe this to the low irradiation doses and the low substrate temperature that make the ion irradiation play a more important role in producing defects rather than element doping. Furthermore, the ion irradiated CNTs exhibit excellent FE stability, showing promising prospects in practical applications.

4.
Nanoscale ; 5(24): 12388-93, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24162073

RESUMO

Vertical multi-layer graphenes (MLGs) have been synthesized without a catalyst on planar and nano-structured substrates by using microwave plasma enhanced chemical vapor deposition. The growth of MLGs on non-carbon substrates is quite different from that on carbon-based substrates. It starts with a pre-deposition of a carbon buffer layer to achieve a homo-epitaxial growth. The nucleation and growth of MLGs was found to be strongly influenced by the surface geometry and topography of substrates. Planar substrates suitable for atom diffusion are favorable for growing large-scale MLGs, and defect-rich substrates are beneficial for quick MLG nucleation and thus the growth of densely distributed MLGs. The field emission properties of MLGs grown on planar and nano-structured substrates were studied and are found to be strongly dependent on the nature of substrates. Substrates having good conductivity and large aspect ratios such as carbon nanotubes (CNTs) have good field emission properties. The best field emission properties of MLG/CNT composites with optimal shapes were observed with a low turn-on electric field of 0.93 V µm(-1), a threshold field of 1.56 V µm(-1), a maximum emission current density of 60.72 mA cm(-2), and excellent stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...