Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457019

RESUMO

Alternative splicing is an important mechanism for regulating gene expressions at the post-transcriptional level. In eukaryotes, the genes are transcribed in the nucleus to produce pre-mRNAs and alternative splicing can splice a pre-mRNA to eventually form multiple different mature mRNAs, greatly increasing the number of genes and protein diversity. Alternative splicing is involved in the regulation of various plant life activities, especially the response of plants to abiotic stresses and is also an important process of plant growth and development. This review aims to clarify the usefulness of a genome-wide association analysis in the study of alternatively spliced variants by summarizing the application of alternative splicing, genome-wide association analyses and genome-wide association analyses in alternative splicing, as well as summarizing the related research progress.


Assuntos
Processamento Alternativo , Zea mays , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Mutação , Precursores de RNA/genética , Zea mays/genética , Zea mays/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408887

RESUMO

Grain size is an important component of quality and harvest traits in the field of rice breeding. Although numerous quantitative trait loci (QTLs) of grain size in rice have been reported, the molecular mechanisms of these QTLs remain poorly understood, and further research on QTL observation and candidate gene identification is warranted. In our research, we developed a suite of F2 intercross populations from a cross of 9311 and CG. These primary populations were used to map QTLs conferring grain size, evaluated across three environments, and then subjected to bulked-segregant analysis-seq (BSA-seq). In total, 4, 11, 12 and 14 QTLs for grain length (GL), grain width (GW), 1000-grain weight (TGW), and length/width ratio (LWR), respectively, were detected on the basis of a single-environment analysis. In particular, over 200 splicing-related sites were identified by whole-genome sequencing, including one splicing-site mutation with G>A at the beginning of intron 4 on Os03g0841800 (qGL3.3), producing a smaller open reading frame, without the third and fourth exons. A previous study revealed that the loss-of-function allele caused by this splicing site can negatively regulate rice grain length. Furthermore, qTGW2.1 and qGW2.3 were new QTLs for grain width. We used the near-isogenic lines (NILs) of these GW QTLs to study their genetic effects on individuals and pyramiding, and found that they have additive effects on GW. In summary, these discoveries provide a valuable genetic resource, which will facilitate further study of the genetic polymorphism of new rice varieties in rice breeding.


Assuntos
Oryza , Locos de Características Quantitativas , Mapeamento Cromossômico , Grão Comestível/genética , Oryza/genética , Melhoramento Vegetal
3.
Stress Biol ; 2(1): 39, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37676445

RESUMO

Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.

4.
Plant Cell Environ ; 44(1): 88-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32677712

RESUMO

Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.


Assuntos
Sementes/metabolismo , Cloreto de Sódio/metabolismo , Zea mays/genética , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteoma , Estresse Salino , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
5.
Front Plant Sci ; 10: 716, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231407

RESUMO

Roots are important plant organs. Lateral root (LR) initiation (LRI) and development play a central role in environmental adaptation. The mechanism of LR development has been well investigated in Arabidopsis. When we evaluated the distribution of auxin and abscisic acid (ABA) in maize, we found that the mechanism differed from that in Arabidopsis. The distribution of ABA and auxin within the primary roots (PRs) and LRs was independent of each other. Auxin localization was observed below the quiescent center of the root tips, while ABA localized at the top of the quiescent center. Furthermore, NaCl inhibited LRI by increasing ABA accumulation, which mainly regulates auxin distribution, while auxin biosynthesis was inhibited by ABA in Arabidopsis. The polar localization of ZmPIN1 in maize was disrupted by NaCl and exogenous ABA. An inhibitor of ABA biosynthesis, fluridone (FLU), and the ABA biosynthesis mutant vp14 rescued the phenotype under NaCl treatment. Together, all the evidence suggested that NaCl promoted ABA accumulation in LRs and that ABA altered the polar localization of ZmPIN1, disrupted the distribution of auxin and inhibited LRI and development.

6.
Clin Endocrinol (Oxf) ; 89(4): 408-413, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885255

RESUMO

OBJECTIVE: Liver cirrhosis (LC) was associated with an increased risk of osteoporosis; however, the association between LC and fracture risk was inconclusive. Therefore, this systematic review and meta-analysis aims to explore the association between LC and fracture risk. DESIGN: To identify related literature, a systematic search of PubMed, EMBASE, Web of science and the Cochrane Library from 1965 to July 2017 without language limitation was performed. The random-effects model described by DerSimonian and Laird was used to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Eventually, 5 cohort and 3 case-control studies were identified, which included 321 035 subjects and 31 272 fracture cases. The pooled OR of the association between LC and any fracture risk, hip fracture, spine/trunk fracture and limb fracture was 1.94 (95% CI, 1.59-2.37), 2.11 (95% CI, 1.34-3.32), 2.00 (95% CI, 1.50-2.67) and 1.82 (95% CI, 1.65-2.01), respectively. CONCLUSION: In conclusion, this study indicates that cirrhotic patients have an increased risk of fracture. Preventive measures should be instituted as early as possible.


Assuntos
Fraturas Ósseas/epidemiologia , Cirrose Hepática/epidemiologia , Animais , Intervalos de Confiança , Fraturas do Quadril/epidemiologia , Humanos , Razão de Chances , Fatores de Risco
7.
Plant J ; 94(4): 612-625, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29495079

RESUMO

Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.


Assuntos
Adaptação Fisiológica , Calcineurina/metabolismo , Cálcio/metabolismo , Oryza/genética , Regiões Promotoras Genéticas/genética , Calcineurina/genética , Ecótipo , Inundações , Variação Genética , Germinação , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/fisiologia , Especificidade da Espécie , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...