Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835961

RESUMO

Positively charged nanofiltration (NF) membranes show great potential in the fields of water treatment and resource recovery. However, this kind of NF membrane usually suffers from relatively low water permeance. Herein, a positively charged NF membrane with a porous interlayer is developed, where the interlayer is formed by assembling dendritic mesoporous silica nanoparticles (DMSNs) after the formation of a polyamide layer. This post-assembly strategy avoids the adverse effect of the interlayer on the formation of positively charged NF membranes. The porous DMSN interlayer provides abundant connected channels for water transport, thus endowing the NF membrane with enhanced water permeance. A series of DMSNs with different sizes was synthesized, and their influence on membrane formation and membrane performance was systematically investigated. The optimized membrane exhibits a CaCl2 rejection rate of 95.2% and a water flux of 133.6 L·h-1·m-2, which is 1.6 times that of the control group without an interlayer. This work represents an approach to the fabrication of a positively charged NF membrane with porous interlayers for high-efficiency cation rejection.

2.
Polymers (Basel) ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850227

RESUMO

A reverse osmosis (RO) membrane with a high water permeance and salt rejection is needed to reduce the energy requirement for desalination and water treatment. However, improving water permeance while maintaining a high rejection of the polyamide RO membrane remains a great challenge. Herein, we report a rigid-flexible coupling strategy to prepare a high-performance RO membrane through introducing monoamine with a flexible aliphatic ring (i.e., piperidine (PPR)) into the interfacial polymerization (IP) system of trimesoyl chloride (TMC) and m-phenylenediamine (MPD). The resulted polyamide film consists of a robust aromatic skeleton and soft aliphatic-ring side chain, where the aliphatic ring optimizes the microstructure of polyamide network at a molecular level. The obtained membranes thereby showed an enhanced water permeance of up to 2.96 L·m-2 h-1 bar-1, nearly a 3-fold enhancement compared to the control group, meanwhile exhibiting an ultrahigh rejection toward NaCl (99.4%), thus successfully overcoming the permeability-selectivity trade-off limit. Furthermore, the mechanism of the enhanced performance was investigated by molecular simulation. Our work provides a simple way to fabricate advanced RO membranes with outstanding performance.

3.
Environ Technol ; 43(13): 2002-2016, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33319633

RESUMO

The products distributions of oily sludge (OS) pyrolysis was fully explored by combining the pyrolysis experiments and molecular simulation, to help to deeply understand this complicated reaction process. The results of products analysis indicated that the main reactions include chain-breaking reactions, dehydrogenation reactions, aromatization reactions, alkylation reactions, and dehydrogenation condensation reactions. Microwave pyrolysis of model OS comprised of n-dodecane and OS sediment were conducted to further explore the specific reaction during the pyrolysis process, and the results showed that the pyrolysis of saturated alkanes begins at 350℃, and dehydrogenation condensation begins at 500℃. Specifically, saturated alkanes first dehydrogenated to form large molecules of α-alkene, then α-alkenes broke chains to form smaller molecules of alkanes. Furthermore, the pyrolysis process of n-dodecane was simulated by Reactive force field molecular dynamics (ReaxFF MD), and the molecular pyrolysis products distribution obtained by simulation was in good agreement with the experimental result.


Assuntos
Pirólise , Esgotos , Alcanos , Micro-Ondas , Simulação de Dinâmica Molecular , Óleos
4.
Bioresour Technol ; 329: 124822, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33631453

RESUMO

In this work, the co-pyrolysis behavior of rice husk (RH) and oily sludge (OS) was investigated by combining experiments and simulation. The thermogravimetric-derivative thermogravimetric (TG-DTG) and Reaction force field (ReaxFF MD) results indicate that synergetic effects exist in co-pyrolysis. Compared with the single component pyrolysis, the activation energy of RH and OS in co-pyrolysis was decreased by 15.97% and 17.14% shown by kinetic analysis, respectively. The Pyrolysis-gas chromatography/mass spectrometry (PY-GC/MS) experiments, and simulation products analysis reveal that more bio-oil and molecules with low molecular weight were produced during the co-pyrolysis process. The synergetic effect mechanism was studied by detecting the variation of free radical intermediates. The results show that hydroxyl radicals from RH pyrolysis reduced cracking temperature of OS, and the hydrogen radicals from OS pyrolysis increased the degree of ring-splitting of RH. The study explores an approach to identify the synergetic effect and reveal the mechanism of co-pyrolysis.


Assuntos
Oryza , Pirólise , Temperatura Alta , Cinética , Esgotos , Temperatura
5.
ACS Appl Mater Interfaces ; 12(22): 25304-25315, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32369334

RESUMO

Ultrathin polyamide nanofilms are desirable as the separation layers for the highly permeable thin-film composite (TFC) membranes, and recently, their lowest thickness limits have attracted a lot of attention from researchers. Due to the interference of the underlying substrate, preparing a defect-free, ultrathin polyamide nanofilm directly on top of a membrane substrate remains a great challenge. Herein, we report a novel fabrication technique of TFC membranes, named in situ free interfacial polymerization (IFIP), where the IP reaction occurs at the uniform, free oil-water interface dozens of microns above the substrate, and then the resulting nanofilm spontaneously assembles into the TFC structure without extra manual transfer. This IFIP method not only overcomes the limitations of conventional IP, succeeding in preparing ultrathin-nanofilm composite membranes for nanofiltration and reverse osmosis application, but also enables scale membrane manufacturing that is not feasible via previously reported free-standing IP. Based on the IFIP method, the thickness of the polyamide nanofilm was successfully reduced to ca. 3-4 nm, which we believe is close to the ultrathin limit of the polyamide nanofilm for separation application. Meanwhile, the structure-performance relationship revealed that the strategy of increasing TFC membrane permeance by reducing polyamide layer thickness also had a limit. Besides, the IP mechanisms in regard to the formation of surface morphology and film growth were explored by combining experimental and molecular simulation methods. Overall, this work is expected to push forward the fundamental study and practical application of the ultrathin-film composite membrane.

6.
J Environ Manage ; 228: 312-318, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236884

RESUMO

In this paper, the following questions were investigated: the proportion of mass loss, the mass fraction of oil, the structure, composition and ultimate analysis of solid residues and gas products. By comparing the treatment effect of using both microwave and electric as the source of heat to dispose the oil-based drilling cuttings (OBDC), the advantages of microwave heating treatment were demonstrated. Meanwhile, the composition of liquid products by microwave pyrolysis was analyzed. The results show that the microwave heating is better than electric heating and the former can promote the pyrolysis of petroleum hydrocarbons. The results of component analysis of the liquid products from OBDC by microwave pyrolysis show that C12∼C20 components pyrolyze at 500 °C. At the same time, a mass of C21∼C24 components volatilize. At the temperature above 500 °C, the thermal cracking reactions of >C25 components occur and a maximum content of paraffin in liquid products is obtained. As the temperature increases, the components obtained by pyrolysis become more and more complex.


Assuntos
Micro-Ondas , Temperatura Alta , Hidrocarbonetos/química , Óleos/química , Petróleo , Pirólise
7.
Materials (Basel) ; 9(9)2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28773900

RESUMO

Two novel triphenylamine-based thiophene derivative monomers, 4-cyano-4',4″-di(4-methoxythiophen-2-yl)triphenylamine and 4-methoxy-4',4″-di(4-methoxythiophen-2-yl)triphenylamine, were successfully synthesized. The corresponding polymers including poly (4-cyano-4',4″-di(4-methoxythiophen-2-yl)triphenylamine) and poly (4-methoxy-4',4″-di(4-methoxythiophen-2-yl)triphenylamine) were electrochemically synthesized and characterized by multiple test method. The electrochemical measurements and spectroelectrochemical analyses revealed that both of the two polymers had quasi-reversible redox behavior and multi-electrochromic properties. The two polymer films showed reversible electrochemical oxidation, excellent optical contrasts in NIR region (62% at 1070 nm for the first polymer, and 86% at 1255 nm for the second polymer), satisfactory coloration efficiencies and fast switching times. The research on the application of the as prepared polymer in the fabrication of electrochromic device was also conducted, employing PCMTPA or PMMTPA as the anodically coloring materials.

8.
Mar Pollut Bull ; 93(1-2): 75-80, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25752538

RESUMO

A mechanically robust and high-capacity oil sorbent is prepared by electrospinning a blend of polystyrene (PS) and polyacrylonitrile (PAN). The morphology, oil sorption capacity and mechanical property of the fibers formed in different compositions are investigated in detail. It is shown that the oil sorption capacity is a result of both the chemical composition and the specific surface area which related to diameter size. The addition of PAN as a component in fibrous sorbents can significantly improve the mechanical properties of PS fibers. Moreover, the oil sorption capacity increases with decreasing fiber diameter. The results also show that the maximum sorption capacities of the PS/PAN sorbent for pump oil, peanut oil, diesel, and gasoline were 194.85, 131.70, 66.75, and 43.38 g g(-1), respectively. Additionally, the sorbent exhibits quick oil sorption speed as well as high buoyancy, which make it a promising candidate for use as an oil spill cleanup sorbent.


Assuntos
Resinas Acrílicas/química , Recuperação e Remediação Ambiental/métodos , Poluição por Petróleo , Poliestirenos/química , Poluentes Químicos da Água/química , Gasolina , Modelos Químicos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...