Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(13): 3409-3426.e24, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38744281

RESUMO

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Histona Desacetilases/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Matriz Extracelular/metabolismo , Feminino , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Exaustão das Células T
2.
PLoS One ; 19(1): e0290699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198479

RESUMO

This paper studies mechanical properties and energy damage evolution of fiber-reinforced cemented sulfur tailings (CSTB) backfill. The effects of fiber length and fiber content on the stress, toughness and failure properties of the CSTB were systematically revealed. In addition, the energy index evolution law was studied, and the energy damage evolution mechanism of CSTB was revealed. The results show that the deformation failure of fiber-reinforced CSTB mainly goes through four stages: initial crack compaction, linear elastic deformation, yield failure and post-peak failure. The peak stress and residual stress of the CSTB firstly increase and then decrease with the increase of fiber content and the addition of fiber can promote the change from brittle failure to ductile failure of the CSTB. Adding appropriate amount of fiber can improve the toughness of CSTB, and the influence degree of fiber length on the toughness index of CSTB is 6mm>12mm>3mm. The total strain energy increases linearly along the variation of fiber content, while the elastic strain energy and dissipated energy increase exponentially at the peak stress point. In the process of CSTB deformation and failure, "gentle-linear growth-slow growth-rapid decline" is for elastic strain energy, while "gentle-slow growth-rapid growth-linear growth" is for dissipation energy. The damage and failure of CSTB mainly experienced four stages: initial damage, slow growth of damage, accelerated damage and damage failure, and the damage evolution curve also showed the changing characteristics of "gentle-slow growth-rapid growth-linear growth". The CSTB without added fiber showed obvious "Y-type" and "linear-type" shear failure characteristics and the phenomenon of shear cracks penetrating the backfill appeared. No big shear crack occur when it is damaged, showing that the fiber addition restrain the crack growth and improve the overall crack resistance of the CSTB. Hydration products are obviously distributed on the surface of the fiber, which indicates that the fiber will be evenly dispersed in the CSTB and form a certain bonding force with the cement-tailings matrix, thus improving the overall mechanical properties of the CSTB.


Assuntos
Cimentos Ósseos , Compressão de Dados , Fenômenos Físicos , Cimentos de Ionômeros de Vidro , Enxofre
3.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843276

RESUMO

The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Espectrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/metabolismo , Carcinogênese/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37855354

RESUMO

BACKGROUND: Multiple brain disorders are treated by Scutellaria Radix (SR), including cerebral ischemia-reperfusion (CI/R). However, more studies are needed to clarify the molecular mechanism of SR for CI/R. METHODS: The active substances and potential targets of SR and CI/R-related genes were obtained through public databases. Overlapping targets of SR and CI/R were analyzed using proteinprotein interaction (PPI) networks. GO and KEGG enrichment analyses were performed to predict the pathways of SR against CI/R, and the key components and targets were screened for molecular docking. The results of network pharmacology analysis were verified using in vitro experiments. RESULTS: 15 components and 64 overlapping targets related to SR and CI/R were obtained. The top targets were AKT1, IL-6, CAS3, TNF, and TP53. These targets have been studied by GO and KEGG to be connected to a number of signaling pathways, including MAPK, PI3K-Akt pathway, and apoptosis. Molecular docking and cell experiments helped to further substantiate the network pharmacology results. CONCLUSION: The active compound of SR was able to significantly decrease the apoptosis of HT22 cells induced by OGD/R. This finding suggests that SR is a potentially effective treatment for CI/R by modulating the MAPK and PI3K-Akt pathways.

5.
Environ Sci Pollut Res Int ; 30(46): 102862-102879, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672156

RESUMO

By preparing fine tailings slurry with different mass concentration and fiber content, the rheological parameters of slurry with different fiber content and curing time were tested. In addition, the influence law of fiber content and curing time on compressive strength was analyzed through the prepared fine tailings backfill samples, and the microstructure characteristics of fine tailings backfill were further studied. The results show that when the fiber content is 0.2 ~ 1.2%, the yield stress and plastic viscosity of the slurry increase with the increase of fiber content, and the thixotropy of the slurry also shows the same change characteristics. The bridge effect of fiber makes it easier for forming network structure, which increase the slurry rheology. When the curing time ranges from 0 h to 2.5 h, the increasing of curing time leads to the increasing trend of rheological parameters, and also increases the thixotropy of slurry. However, the increase of rheological parameters will continuously decrease when the curing time exceeds 1 h, indicating that the influence of curing time on yield stress and thixotropy will gradually weaken with the continuous extension of curing time. When the curing age increases from 3 to 56 days, the compressive strength of the fine tailings backfill increases with the curing age, but the increasing range of compressive strength decreases gradually. When the fiber content ranges from 0.2 to 1.2%, the compressive strength of backfill increases first and then decreases with the increase of fiber content, and reaches the maximum value when the fiber content is 0.6%. The extension of curing time reduces the generation of large-scale pore structure, which promotes the formation of more compact microstructure of backfill.

6.
Biosci Rep ; 41(10)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34549269

RESUMO

Lung cancer remains the leading cause of cancer mortality because of its metastatic potential and high malignancy. The discovery of new applications for old drugs is a shortcut for cancer therapy. We recently investigated the antitumor effect of digoxin, a well-established drug for treating heart failure, against nonsmall cell lung cancer A549 and H1299 cells. Digoxin inhibited the proliferation and colony-forming ability of the two cell lines and arrested the cell cycle at the G0/G1 phase in A549 cells and the G2/M phase in H1299 cells. Mitochondria-mediated apoptosis was induced in A549 cells but not in H1299 cells after treatment with digoxin. Moreover, digoxin inhibited the migration, invasion, adhesion and epithelial-mesenchymal transition of A549 and H1299 cells. Autophagy was induced in both cell lines after treatment with digoxin, with an increase in autophagosome foci. In addition, digoxin inhibited the phosphorylation of Akt, mTOR and p70S6K, signaling molecules of the PI3K/Akt pathway that are known to be involved in tumor cell survival, proliferation, metastasis and autophagy. Our findings suggest that digoxin has the potential to be used for therapy for human nonsmall cell lung cancer, but further evidence is required.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Digoxina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Fosforilação , Transdução de Sinais
7.
Nucleic Acids Res ; 49(8): 4421-4440, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849069

RESUMO

Although overexpression of EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is an eminent feature of various cancers, the regulation of its abundance and function remains insufficiently understood. We report here that the PRC2 complex is physically associated with ubiquitin-specific protease USP7 in cancer cells where USP7 acts to deubiquitinate and stabilize EZH2. Interestingly, we found that USP7-catalyzed H2BK120ub1 deubiquitination is a prerequisite for chromatin loading of PRC2 thus H3K27 trimethylation, and this process is not affected by H2AK119 ubiquitination catalyzed by PRC1. Genome-wide analysis of the transcriptional targets of the USP7/PRC2 complex identified a cohort of genes including FOXO1 that are involved in cell growth and proliferation. We demonstrated that the USP7/PRC2 complex drives cancer cell proliferation and tumorigenesis in vitro and in vivo. We showed that the expression of both USP7 and EZH2 elevates during tumor progression, corresponding to a diminished FOXO1 expression, and the level of the expression of USP7 and EZH2 strongly correlates with histological grades and prognosis of tumor patients. These results reveal a dual role for USP7 in the regulation of the abundance and function of EZH2, supporting the pursuit of USP7 as a therapeutic target for cancer intervention.


Assuntos
Carcinogênese , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Feminino , Proteína Forkhead Box O1/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células Sf9 , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Mol Neurosci ; 71(8): 1703-1713, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33400072

RESUMO

2,5-Dimethyl-celecoxib (DMC) is a close structural analog of the selective COX-2 inhibitor celecoxib that lacks COX-2-inhibitory function. Thus, DMC is a promising drug for anti-tumor. In this study, we evaluated the efficacy and the molecular basis of DMC in the treatment of human glioblastoma multiforme (GBM). DMC inhibited the growth and proliferation of GBM cell lines (LN229, A172, U251, and U87MG) in a dose-dependent manner (P < 0.001). In GBM cells treated with DMC, detection by flow cytometry showed cell cycle arrest, and proteins involved in cell cycle such as P21 were increased. Compared with control group, Annexin-V/PI-staining in DMC-treatment group was increased, indicating that DMC could induce apoptosis in GBM cells. Also, associated proteins including cleaved caspase 3 and cleaved PARP-1 were increased. It was further explored whether DMC blocked cell cycle and induced apoptosis in GBM cells through CIP2A/PP2A/AKT signaling pathway. After treatment of DMC, the phosphorylation of Akt was reduced while the total Akt level was not affected. DMC suppressed the expression of CIP2A in a time-dependent manner, while the CIP2A overexpression group reversed cell cycle and apoptotic protein expression led by DMC. Finally, in a xenograft model in nude mice using LN229 cells, DMC suppressed tumor growth. These findings proved that DMC could block cell cycle and induce apoptosis in GBM cells by suppressing CIP2A/PP2A/Akt signaling axis, which indicated that DMC could be an effective option for GBM treatment.


Assuntos
Antineoplásicos/farmacologia , Autoantígenos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico
9.
Sci Adv ; 6(16): eaaz0356, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494608

RESUMO

TUDOR domain-containing proteins (TDRDs) are chiefly responsible for recognizing methyl-lysine/arginine residue. However, how TDRD dysregulation contributes to breast tumorigenesis is poorly understood. Here, we report that TUDOR domain-containing PHF20L1 as a H3K27me2 reader exerts transcriptional repression by recruiting polycomb repressive complex 2 (PRC2) and Mi-2/nucleosome remodeling and deacetylase (NuRD) complex, linking PRC2-mediated methylation and NuRD-mediated deacetylation of H3K27. Furthermore, PHF20L1 was found to serve as a potential MYC and hypoxia-driven oncogene, promoting glycolysis, proliferation, and metastasis of breast cancer cells by directly inhibiting tumor suppressors such as HIC1, KISS1, and BRCA1. PHF20L1 expression was also strongly correlated with higher histologic grades of breast cancer and markedly up-regulated in several cancers. Meanwhile, Phf20l1 deletion not only induces growth retardation and mammary ductal outgrowth delay but also inhibits tumorigenesis in vivo. Our data indicate that PHF20L1 promotes tumorigenesis, supporting the pursuit of PHF20L1 as a target for cancer therapy.


Assuntos
Neoplasias da Mama , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Neoplasias da Mama/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Humanos , Metilação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Repressor Polycomb 2/metabolismo
10.
Gastroenterol Rep (Oxf) ; 8(6): 465-475, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33442480

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Novel drugs for CRC therapy are urgently needed. Digoxin has been in clinical use for treatment of heart failure and atrial arrhythmias for many years. Fragmentary reports suggested that digoxin might have antitumor efficacy on CRC. Here, we aimed to investigate the antitumor effect of digoxin on human CRC cells and the underlying mechanism. METHODS: Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and plate colony formation assay. The effects of digoxin on cell-cycle distribution and apoptosis were analysed by flow cytometry. The anti-metastatic effect on tumor cells was determined by wound-healing assay and transwell assay. Anti-angiogenic effect was examined by determining the inhibition against proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). Mechanism study was performed by Western blot, enzyme-linked immunosorbent assay (ELISA), and gelatin-zymography assay. RESULTS: Digoxin potently inhibited cell proliferation, induced G1-phase and G2/M-phase arrest in colorectal-cancer HCT8 and SW620 cells, respectively. No obvious apoptosis was observed in the treated cells. Anti-metastatic activities were shown on HCT8 cells by inhibiting the migration and invasion. Meanwhile, the expression of MMP2, MMP9, and phosphorylated Integrinß1 were decreased. Digoxin inhibited the proliferation, migration, and tube formation of HUVECs and reduced HIF1α expression and vascular endothelial growth factor A (VEGF-A) secretion in HCT8 cells, suggesting anti-angiogenic activity. Furthermore, digoxin significantly reversed ABCB1-mediated multidrug resistance on SW620/Ad300 cells. CONCLUSION: Our findings suggest that digoxin has the potential to be applied as an antitumor drug via inhibiting proliferation and metastasis as well as reversing the ABCB1-mediated multidrug resistance of colorectal cancer.

11.
Cell Rep ; 29(6): 1482-1498.e4, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693890

RESUMO

The histone methyl transferase enhancer of zeste homolog 2 (EZH2) is a master transcriptional regulator involved in histone H3 lysine 27 trimethylation. We aimed to elucidate the precise post-translational regulations of EZH2 and their role in cancer pathogenesis. Here, we show that SET and MYND domain containing 2 (SMYD2) directly methylates EZH2 at lysine 307 (K307) and enhances its stability, which can be relieved by the histone H3K4 demethylase lysine-specific demethylase 1 (LSD1). SMYD2 is critical for EZH2 function in repressing a cohort of genes governing several cancer-associated pathways. In addition, SMYD2 promotes breast cancer cell proliferation, epithelial-mesenchymal transition, and invasion through EZH2 K307 methylation, and it is markedly upregulated in various human cancers. Our data suggest that dynamic crosstalk between SMYD2-mediated EZH2 methylation plays an important role in fine-tuning EZH2 functions in chromatin recruitment and transcriptional repression.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/genética , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Bases de Dados Genéticas , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Humanos , Metilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional
12.
Cell Death Dis ; 10(11): 832, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685800

RESUMO

GATA3 has emerged as a prominent transcription factor required for maintaining mammary-gland homeostasis. GATA3 loss is associated with aggressive breast cancer development, but the mechanism by which breast cancer is affected by the loss of GATA3 function remains unclear. Here, we report that GATA3 expression is positively correlated with the expression of UTX, a histone H3K27 demethylase contained in the MLL4 methyltransferase complex, and that GATA3 recruits the chromatin-remodeling MLL4 complex and interacts directly with UTX, ASH2L, and RBBP5. Using RNA sequencing and chromatin immunoprecipitation and sequencing, we demonstrate that the GATA3/UTX complex synergistically regulates a cohort of genes including Dicer and UTX, which are critically involved in the epithelial-to-mesenchymal transition (EMT). Our results further show that the GATA3-UTX-Dicer axis inhibits EMT, invasion, and metastasis of breast cancer cells in vitro and the dissemination of breast cancer in vivo. Our study implicates the GATA3-UTX-Dicer axis in breast cancer metastasis and provides new mechanistic insights into the pathophysiological function of GATA3.


Assuntos
Neoplasias da Mama/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/biossíntese , Proteínas de Neoplasias/metabolismo , Ativação Transcricional , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fator de Transcrição GATA3/genética , Histona Desmetilases/genética , Humanos , Células MCF-7 , Metástase Neoplásica , Proteínas de Neoplasias/genética
13.
J Biol Chem ; 294(43): 15808-15825, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31492753

RESUMO

GATA3 is a basic and essential transcription factor that regulates many pathophysiological processes and is required for the development of mammary luminal epithelial cells. Loss-of-function GATA3 alterations in breast cancer are associated with poor prognosis. Here, we sought to understand the tumor-suppressive functions GATA3 normally performs. We discovered a role for GATA3 in suppressing epithelial-to-mesenchymal transition (EMT) in breast cancer by activating miR-455-3p expression. Enforced expression of miR-455-3p alone partially prevented EMT induced by transforming growth factor ß (TGF-ß) both in cells and tumor xenografts by directly inhibiting key components of TGF-ß signaling. Pathway and biochemical analyses showed that one miRNA-455-3p target, the TGF-ß-induced protein ZEB1, recruits the Mi-2/nucleosome remodeling and deacetylase (NuRD) complex to the promotor region of miR-455 to strictly repress the GATA3-induced transcription of this microRNA. Considering that ZEB1 enhances TGF-ß signaling, we delineated a double-feedback interaction between ZEB1 and miR-455-3p, in addition to the repressive effect of miR-455-3p on TGF-ß signaling. Our study revealed that a feedback loop between these two axes, specifically GATA3-induced miR-455-3p expression, could repress ZEB1 and its recruitment of NuRD (MTA1) to suppress miR-455, which ultimately regulates TGF-ß signaling. In conclusion, we identified that miR-455-3p plays a pivotal role in inhibiting the EMT and TGF-ß signaling pathway and maintaining cell differentiation. This forms the basis of that miR-455-3p might be a promising therapeutic intervention for breast cancer.


Assuntos
Células Epiteliais/metabolismo , Fator de Transcrição GATA3/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Sequência de Bases , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos SCID , MicroRNAs/genética , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Transcrição Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
14.
Am J Cancer Res ; 8(10): 2030-2045, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416854

RESUMO

Breast carcinoma metastasis suppressor gene 1 (BRMS1) encodes an inhibitor of metastasis and is reported in many types of tumor metastasis. However, the mechanism of BRMS1-mediated inhibition of breast cancer metastasis at the transcriptional level remains elusive. Here, we identified using affinity purification and mass spectrometry (MS) that BRMS1 is an integral component of the LSD1/CoREST corepressor complex. Analysis of the BRMS1/LSD1 complex using high-throughput RNA deep sequencing (RNA-seq) identified a cohort of target genes such as VIM, INSIG2, KLK11, MRPL33, COL5A2, OLFML3 and SLC1A1, some of which are metastasis-related. Our results have showed that BRMS1 together with LSD1 are required for inhibition of breast cancer cell migration and invasion. Collectively, these findings demonstrate that BRMS1 executes transcriptional suppression of breast cancer metastasis by associating with the LSD1 and thus can be targeted for breast cancer therapy.

15.
J Mol Cell Biol ; 10(4): 285-301, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741645

RESUMO

Lysine-specific demethylase 1 (LSD1) was the first histone demethylase identified as catalysing the removal of mono- and di-methylation marks on histone H3-K4. Despite the potential broad action of LSD1 in transcription regulation, recent studies indicate that LSD1 may coordinate with multiple epigenetic regulatory complexes including CoREST/HDAC complex, NuRD complex, SIRT1, and PRC2, implying complicated mechanistic actions of this seemingly simple enzyme. Here, we report that LSD1 is also an integral component of the SIN3A/HDAC complex. Transcriptional target analysis using ChIP-on-chip technology revealed that the LSD1/SIN3A/HDAC complex targets several cellular signalling pathways that are critically involved in cell proliferation, survival, metastasis, and apoptosis, especially the p53 signalling pathway. We have demonstrated that LSD1 coordinates with the SIN3A/HDAC complex in inhibiting a series of genes such as CASP7, TGFB2, CDKN1A(p21), HIF1A, TERT, and MDM2, some of which are oncogenic. Our experiments also found that LSD1 and SIN3A are required for optimal survival and growth of breast cancer cells while also essential for the maintenance of epithelial homoeostasis and chemosensitivity. Our data indicate that LSD1 is a functional alternative subunit of the SIN3A/HDAC complex, providing a molecular basis for the interplay of histone demethylation and deacetylation in chromatin remodelling, and suggest that the LSD1/SIN3A/HDAC complex could be a target for breast cancer therapeutic strategies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Mapas de Interação de Proteínas , Proteínas Repressoras/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Mapas de Interação de Proteínas/efeitos dos fármacos , Complexo Correpressor Histona Desacetilase e Sin3
16.
Nucleic Acids Res ; 46(13): 6608-6626, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29846670

RESUMO

Histone post-translational modifications regulate chromatin structure and function largely through interactions with effector proteins that often contain multiple histone-binding domains. PHF1 [plant homeodomain (PHD) finger protein 1], which contains two kinds of histone reader modules, a Tudor domain and two PHD fingers, is an essential factor for epigenetic regulation and genome maintenance. While significant progress has been made in characterizing the function of the Tudor domain, the roles of the two PHD fingers are poorly defined. Here, we demonstrated that the N-terminal PHD finger of PHF1 recognizes symmetric dimethylation of H4R3 (H4R3me2s) catalyzed by PRMT5-WDR77. However, the C-terminal PHD finger of PHF1, instead of binding to modified histones, directly interacts with DDB1, the main component of the CUL4B-Ring E3 ligase complex (CRL4B), which is responsible for H2AK119 mono-ubiquitination (H2AK119ub1). We showed that PHF1, PRMT5-WDR77, and CRL4B reciprocally interact with one another and collaborate as a functional unit. Genome-wide analysis of PHF1/PRMT5/CUL4B targets identified a cohort of genes including E-cadherin and FBXW7, which are critically involved in cell growth and migration. We demonstrated that PHF1 promotes cell proliferation, invasion, and tumorigenesis in vivo and in vitro and found that its expression is markedly upregulated in a variety of human cancers. Our data identified a new reader for H4R3me2s and provided a molecular basis for the functional interplay between histone arginine methylation and ubiquitination. The results also indicated that PHF1 is a key factor in cancer progression, supporting the pursuit of PHF1 as a target for cancer therapy.


Assuntos
Carcinogênese , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Carcinoma/metabolismo , Linhagem Celular , Proliferação de Células , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Células HEK293 , Humanos , Metilação , Camundongos , Metástase Neoplásica , Proteínas do Grupo Polycomb/fisiologia , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
Theranostics ; 8(4): 972-989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29463994

RESUMO

The homeodomain transcription factor SIX3 was recently reported to be a negative regulator of the Wnt pathway and has an emerging role in cancer. However, how SIX3 contributes to tumorigenesis and metastasis is poorly understood. METHODS: We employed affinity purification and mass spectrometry (MS) to identify the proteins physically associated with SIX3. Genome-wide analysis of the SIX3/LSD1/NuRD(MTA3) complex using a chromatin immunoprecipitation-on-chip approach identified a cohort of target genes including WNT1 and FOXC2, which are critically involved in cell proliferation and epithelial-to-mesenchymal transition. Also, we used flow cytometry, growth curve analysis, EdU incorporation assay, colony formation assays, trans-well invasion assays, immunohistochemical staining and in vivo bioluminescence assay to investigate the function of SIX3 in tumorigenesis. RESULTS: We demonstrate that the SIX3/LSD1/NuRD(MTA3) complex inhibits carcinogenesis in breast cancer cells and suppresses metastasis in breast cancer. SIX3 expression is downregulated in various human cancers and high SIX3 is correlated with improved prognosis. CONCLUSION: Our study revealed an important mechanistic link between the loss of function of SIX3 and tumor progression, identified a molecular basis for the opposing actions of MTA1 and MTA3, and may provide new potential prognostic indicators and targets for cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese , Proteínas do Olho/metabolismo , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Metástase Neoplásica/fisiopatologia , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linhagem Celular Tumoral , Cromatografia de Afinidade , Técnicas Citológicas , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunoprecipitação , Espectrometria de Massas , Modelos Biológicos , Ligação Proteica , Ensaio Tumoral de Célula-Tronco , Proteína Homeobox SIX3
18.
Oncol Lett ; 13(6): 4825-4831, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28599484

RESUMO

Curcumin is a polyphenol extracted from turmeric, which that belongs to the Zingiberaceae family. Curcumin has numerous effects, including anti-inflammatory, antitumor, anti-oxidative and antimicrobial effects. However, the effects of curcumin on human breast cancer cells remain largely unknown. The aim of the present study was to investigate the anticancer effects and the mechanisms by which curcumin affects breast cancer cells. The anticancer effect of curcumin on cell viability and cytotoxicity on human breast cancer MCF-7 cells was analyzed using 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase assays, respectively. Cell apoptosis of MCF-7 cells was detected using flow cytometry, 4',6-diamidino-2-phenylindolestaining assay and caspase-3/9 activity kits. Reverse transcription-quantitative polymerase chain reaction was used to analyze microRNA-21 (miR-21) expression in MCF-7 cells. The protein expression of phosphatase and tensin homolog (PTEN) and phospho-protein kinase B (pAkt) was determined by western blot analysis. miR-21 was transfected into MCF-7 cells and the anticancer effect of curcumin on cell viability and the expression of PTEN and pAkt was analyzed. The present results demonstrated that curcumin inhibited cell viability and induced cytotoxicity of MCF-7 cells in a concentration- and time-dependent manner, by inducing apoptosis and increasing caspase-3/9 activities. In addition, curcumin downregulated miR-21 expression in MCF-7 cells by upregulating the PTEN/Akt signaling pathway. The present study has for the first time, to the best of our knowledge, revealed the anticancer effect of curcumin in suppressing breast cancer cell growth, and has elucidated that the miR-21/PTEN/Akt signaling pathway is a key mechanism for the anticancer effects of curcumin.

19.
Cancer Cell ; 30(5): 708-722, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27773593

RESUMO

Although clinically associated with severe developmental defects, the biological function of FOXK2 remains poorly explored. Here we report that FOXK2 interacts with transcription corepressor complexes NCoR/SMRT, SIN3A, NuRD, and REST/CoREST to repress a cohort of genes including HIF1ß and EZH2 and to regulate several signaling pathways including the hypoxic response. We show that FOXK2 inhibits the proliferation and invasion of breast cancer cells and suppresses the growth and metastasis of breast cancer. Interestingly, FOXK2 is transactivated by ERα and transrepressed via reciprocal successive feedback by HIF1ß/EZH2. Significantly, the expression of FOXK2 is progressively lost during breast cancer progression, and low FOXK2 expression is strongly correlated with higher histologic grades, positive lymph nodes, and ERα-/PR-/HER2- status, all indicators of poor prognosis.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Neoplasias da Mama/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptor alfa de Estrogênio/genética , Fatores de Transcrição Forkhead/metabolismo , Transcrição Gênica , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Feminino , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Prognóstico , Transdução de Sinais
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(4): 411-6, 2016 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-27241153

RESUMO

OBJECTIVE: To explore the factors affecting the successful rate of nano-carbon in sentinel lymph node biopsy.
 METHODS: A total of 270 patients with breast cancer, who were treated in First Affilitated Hospital of Henan University of Science and Technology from January 2013 to March 2015, were chosen and given sentinel lymph node biopsy (SLN) with nano-carbon, and the influencial factors were examined by logistic analysis.
 RESULTS: Successful rate of biopsy, accuracy, sensitivity and false negative rate was 92.2%, 97.6%, 93.1% and 6.8%, respectively. Age, primary tumor lesions, body mass index, axillary lymph node status, number of SLN and pathological grade were the factors affetcing successful biopsy (all P<0.05), and body mass index, age, and number of SLN were three independent factors affecting the successful rate of biopsy (all P<0.05). The history of biopsy, tumor location, affected sides, injection sites and chemotherapy showed little effect on the successful rate of biopsy (all P> 0.05).
 CONCLUSION: Nano-carbon tracer method is a reliable method in sentinel lymph node biopsy. The body mass index, age, and number of lymph node metastasis greatly impact the successful rate of biopsy.


Assuntos
Neoplasias da Mama/diagnóstico , Nanopartículas/química , Biópsia de Linfonodo Sentinela , Axila , Carbono/química , Feminino , Humanos , Modelos Logísticos , Linfonodos/patologia , Metástase Linfática , Terapia Neoadjuvante , Gradação de Tumores , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...