Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 35217-35224, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940306

RESUMO

Aqueous zinc-ion batteries (AZIBs) have emerged as one of the most promising energy storage technologies due to their high safety and cost-effectiveness. However, several challenges associated with the Zn metal anode, such as dendrite growth, corrosion, and hydrogen evolution reaction (HER), have hindered further applications of AZIBs. Herein, maltose (MT) is used as a functional electrolyte additive to protect the Zn metal electrode during the interface deposition process. The additive can effectively affect the interface of Zn metal, suppressing HER and corrosion reactions. Moreover, it facilitates the uniform deposition of Zn by inducing Zn2+ to form a stable (100) crystal plane. As a result, the symmetric cell exhibited stable cycling performance for 2000 h at a current density of 2 mA cm-2, and the Zn||NH4V4O10 full cell maintained steady cycling for 1000 cycles at 2 A g-1. This study provides an approach to achieve uniform Zn deposition through additives.

2.
Langmuir ; 36(16): 4532-4539, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32272836

RESUMO

An effectual and understandable route for the fabrication techniques of stereoscopic NO2 sensor is provided in this work. As the gas-sensing layer of the sensor, copper phthalocyanine (CuPc) grew on the top of poly(vinyl alcohol) (PVA) nanofibers (NFs). The sensitivity of the CuPc/PVA NFs stereoscopic sensors to NO2 was over 829%/ppm, while the sensitivity of the continuous CuPc films sensors was 2 orders of magnitude lower than that of the stereoscopic ones. To the responsivities at 25 ppm of NO2, the CuPc/PVA NFs stereoscopic sensors were about four times stronger than that of the continuous CuPc films sensors. For the recovery time, the CuPc/PVA NFs stereoscopic sensors were over eight times faster than the continuous CuPc films sensors. This general tactic can be used to prepare various toxic gas sensors to improve the overall performance of the devices.

3.
Materials (Basel) ; 11(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110975

RESUMO

High chromium steel has been synthesized by an induction furnace adopting electromagnetic stirring (EMS). Varying amounts of cobalt was added to obtain 3, 6, and 12% Co in the steel. The melt was allowed to solidify with or without EMS in a rotary magnetic field. The effects of the varying cobalt content and the stirring have been characterized by the microstructural evolution and the consequent improvement in mechanical properties. The application of a rotary EMS during solidification has shown a significant effect on the grain refining, the reduction of element segregation, the promotion of eutectic volume fraction, and the consequent improvement of mechanical properties, including hardness and high-temperature strength. The formation mechanism of the eutectic structure and the precipitation of M7C3 and M23C6 carbides was discussed according to the calculated phase diagram. The increment of cobalt content improved the eutectic volume fraction. Cobalt addition also enhanced the hardness and the yield tensile strength, provided that the ingot structure was homogenized by the EMS.

4.
Sci Rep ; 6: 39650, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004839

RESUMO

The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

5.
Mater Sci Eng C Mater Biol Appl ; 64: 260-268, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27127052

RESUMO

Due to the ignorance by many researchers on the influence of starting microstructure on the metal release of biomedical materials in human body after implant, in this study, the effect of surface friction treatment on the in vitro release of the constituent elements of the biomedical Co-29Cr-6Mo-0.16N (CCM) alloy is investigated for the first time by immersion test in lactic acid solution combined with electron backscatter diffraction, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-EOS). The results indicate that friction treatment on the as-annealed CCM alloy sample surface leads to a planar strain-induced martensitic transformation (SIMT) on sample surface; this greatly accelerates the release of all the constituent elements and, in particular, that of Co as indicated by the ICP-EOS analysis. This increase can be ascribed to a localized deformation that occurred over the entire sample surface, with the dislocation density being high within the SIMTed phase and low in the alloy matrix.


Assuntos
Ligas/química , Cromo/química , Cobalto/química , Molibdênio/química , Fricção
6.
ACS Synth Biol ; 3(12): 1011-4, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524112

RESUMO

Aromatic pollutants in the environments pose significant threat to human health due to their persistence and toxicity. Here, we report the design and comprehensive characterization of a set of aromatic biosensors constructed using green fluorescence protein as the reporter and aromatics-responsive transcriptional regulators, namely, NahR, XylS, HbpR, and DmpR, as the detectors. The genetic connections between the detectors and the reporter were carefully adjusted to achieve fold inductions far exceeding those reported in previous studies. For each biosensor, the functional characteristics including the dose-responses, dynamic range, and the detection spectrum of aromatic species were thoroughly measured. In particular, the interferences that nontypical inducers exert on each biosensor's response to its strongest inducer were evaluated. These well-characterized biosensors might serve as potent tools for environmental monitoring as well as quantitative gene regulation.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental/métodos , Hidrocarbonetos Aromáticos/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...