Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-11, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37226862

RESUMO

ABSTRACTAcclimatization of short-cut denitrifying polyphosphate accumulating organisms (SDPAOs), metabolic mechanism, and operating parameters were analyzed to investigate the performance of the anaerobic/anoxic sequencing batch reactor (A2SBR) process. The high-throughput sequencing technology was employed to explore the microbial community structures of activated sludge systems. The experimental results illustrated that SDPAOs were successfully enriched with three-phase inoculation for 36 days. The removal rates of TP and NO2--N were 93.22% and 91.36%, respectively, under the optimal parameters of a pH of 7.5, an SRT of 26 days, a temperature of 24 ℃ and a COD of 200.00 mg·L-1 using acetate as the carbon source. In the anaerobic stage, 82.20% external carbon source was converted into 88.78 mg·g-1 PHB, and the removal rate of NO2--N in the anoxic stage was characterized by ΔNO2--N/ΔPHB, anoxic ΔP/ΔPHBeffective was 0.289, which was higher than anaerobic ΔP/ΔCODeffective of 0.203. Ignavibacterium and Povalibacter with significant phosphorus removal ability were the dominant bacterial genera. The nitrogen and phosphorus removal could be realized simultaneously in an anaerobic/anoxic sequencing batch reactor. Therefore, this study provided an important understanding of the removal of nitrogen and phosphorus from low-carbon nitrogen wastewater.

2.
Environ Technol ; 44(7): 921-935, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34591752

RESUMO

The treatment of garlic processing wastewater was investigated in a UASB-SBR system. The experimental results showed that UASB was successfully started up after 64 days of continuous operation with COD removal rate of 45%. SBR start-up phase went through 60 days and the COD removal rate achieved 96%. UASB ran under optimal conditions (HRT of 45 h, pH of 7.5, and temperature of 35 ± 2°C) for 14d and performed well in organic matter treatment. SBR played a major part in nitrogen and phosphorus removal when running under optimal conditions (cycle time of 12 h, temperature of 25°C, organic loading of 0.72 kgCOD/(m3·d), and COD of 6000 mg/L) for 18d. Secondly, the microbial community structure indicated that the abundance of ß-Proteobacteria and α-Proteobacteria in the sludge reached 30.05% and 47.57%, respectively, and played a crucial part for the organic matter, nitrogen and phosphorus removal in the SBR. After UASB-SBR system had been stabilised with influent COD of 9800 mg/L, the average COD, TP, NH3-N and TN removal rates were 99%, 94.82%, 87.07% and 94.87%, respectively, which were 3%, -2%, 1% and 3.5% higher than SBR running alone under optimal conditions. UASB coupled with SBR process had an excellent performance for high-concentration garlic processing wastewater.


Assuntos
Alho , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Nitrogênio/química , Fósforo
3.
Environ Technol ; 44(20): 3018-3032, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35244523

RESUMO

This study proposed an AO-SBR (Anaerobic Aerobic Sequencing Batch Reactor) combined with iron-carbon micro-electrolysis (ICME) particles system for sewage treatment at low temperature and explored the dephosphorisation mechanism and microbial community structure. The experimental results illustrated that ICME particles contributed to phosphorus removal, metabolic mechanism of poly-phosphorus accumulating organism (PAO) and microbial community structure in the AO-SBR system. The optimal treatment effect was achieved under the conditions of pH 7, DO 3.0 mg/L and particle dosage of 2.6 g Fe-C/g MLSS, and the removal rates of COD, TP, NH4+-N and TN reached 80.56%, 91.46%, 69.42% and 57.57%. The proportion of phosphorus accumulating organisms (PAOs) increased from 4.54% in the SBR system to 10.89% in the ICME-SBR system at 10°C. Additionally, the metabolic rate of PAOs was promoted, and the activities of DHA and ETS both reached the maximum value of 13.34 and 102.88 µg·mg-1VSS·h-1. These results suggest that the ICME particles could improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading the performance of sewage treatment in the cold area.


Assuntos
Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Reatores Biológicos , Carbono , Nitrogênio , Fósforo/metabolismo , Esgotos/química , Temperatura , Eliminação de Resíduos Líquidos/métodos
4.
ACS Omega ; 5(19): 10878-10890, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455208

RESUMO

To establish the molecular mechanism of ginsenoside Rg1 in nonalcoholic fatty liver disease (NAFLD), Sprague Dawley (SD) rats (180-220 g) were randomly divided into a control group, model group, ginsenoside Rg1 low-dose group (30 mg/(kg day)), high-dose (60 mg/(kg day)) group, and simvastatin group (1 mg/(kg day)), with 10 SD rats in each group. The control group was given a normal diet. The model group rats were given high-sugar and high-fat diets for 14 weeks. After the model of NAFLD was established successfully, ginsenoside Rg1 was administered orally for 4 or 8 weeks. The results showed that ginsenoside Rg1 decreased the levels of glucose (GLU), insulin (INS), triglyceride (TG), and total cholesterol (TC) and improved liver function. Meanwhile, ginsenoside Rg1 inhibited the secretion of interleukin-1 (IL-1), IL-6, IL-8, IL-18, and tumor necrosis factor-α (TNF-α) and improved hepatocyte morphology and lipid accumulation in the liver. Furthermore, ginsenoside Rg1 promoted the expression of peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyl transferase 1α (CPT1A), carnitine palmitoyl transferase 2 (CPT2), and cholesterol 7α-hydroxylase (CYP-7A) and inhibited the expression of sterol regulatory element binding proteins-1C (SREBP-1C). In conclusion, ginsenoside Rg1 can inhibit inflammatory reaction, regulate lipid metabolism, and alleviate liver injury in NAFLD model rats.

5.
Eur J Pharmacol ; 843: 277-284, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30485790

RESUMO

Insulin resistance is a major pathophysiological feature in the development of type 2 diabetes. The liver is an important organ responsible for the development of insulin resistance, and exploring liver glucose metabolism is important to study insulin resistance. We first established the model of insulin resistance in HepG2 cells and then treated them with different concentrations of ginsenoside-Rg1. The results showed that ginsenoside-Rg1 is not toxic to HepG2 cells. In addition, ginsenoside-Rg1 relieved the insulin-induced insulin resistance in HepG2 cells. Furthermore, ginsenoside-Rg1 increased the uptake of glucose by reducing reactive oxygen species and down-regulating the phosphorylation level of p38 MAPK. In addition, ginsenoside-Rg1 also decreased the output of glucose by increasing Akt phosphorylation and reducing GSK3ß expression. In conclusion, ginsenoside-Rg1 can alleviate the insulin resistance through increasing the uptake of glucose and decreasing the output of glucose.


Assuntos
Ginsenosídeos/farmacologia , Glucose/metabolismo , Células Hep G2 , Humanos , Resistência à Insulina , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...