Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917402

RESUMO

Validamycin A (VMA) is an antifungal antibiotic derived from Streptomyces hygroscopicus commonly used in plant disease management. Surprisingly, VMA was discovered to impede the production of fumonisin B1 (FB1) in agricultural settings. However, the specific target of VMA in Fusarium verticillioides remained unclear. To unravel the molecular mechanism of VMA, ultrastructural observations unveiled damage to mitochondrial membranes. Trehalase (FvNth) was pinpointed as the target of VMA by utilizing a 3D-printed surface plasmon resonance sensor. Molecular docking identified Trp285, Arg447, Asp452, and Phe665 as the binding sites between VMA and FvNth. A ΔFvnth mutant lacking amino acids 250-670 was engineered through homologous recombination. Transcriptome analysis indicated that samples treated with VMA and ΔFvnth displayed similar expression patterns, particularly in the suppression of the FUM gene cluster. VMA treatment resulted in reduced trehalase and ATPase activity as well as diminished production of glucose, pyruvic acid, and acetyl-CoA. Conversely, these effects were absent in samples treated with ΔFvnth. This research proposes that VMA hinders acetyl-CoA synthesis by trehalase, thereby suppressing the FB1 biosynthesis. These findings present a novel target for the development of mycotoxin control agents.

2.
Cell Signal ; 120: 111238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810862

RESUMO

Abnormal Krüppel-like factor 11 (KLF11) expression is frequently found in tumor tissues and is associated with cancer prognosis, but its biological functions and corresponding mechanisms remain elusive. Here, we demonstrated that KLF11 functions as an oncoprotein to promote tumor proliferation in breast cancer cells. Mechanistically, at the transcription level, KLF11 decreased TP53 mRNA expression. Notably, KLF11 also interacted with and stabilized MDM2 through inhibiting MDM2 ubiquitination and subsequent degradation. This increase in MDM2 in turn accelerated the ubiquitin-mediated proteolysis of p53, leading to the reduced expression of p53 and its target genes, including CDKN1A, BAX, and NOXA1. Accordingly, data from animals further confirmed that KLF11 significantly upregulated the growth of breast cancer cells and was inversely correlated with p53 expression. Taken together, our findings reveal a novel mechanism for breast cancer progression in which the function of the tumor suppressor p53 is dramatically weakened.


Assuntos
Neoplasias da Mama , Proliferação de Células , Proteínas Proto-Oncogênicas c-mdm2 , Transdução de Sinais , Proteína Supressora de Tumor p53 , Ubiquitinação , Humanos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Feminino , Animais , Linhagem Celular Tumoral , Camundongos Nus , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Regulação Neoplásica da Expressão Gênica , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Camundongos , Proteólise , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...