Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 169: 105720, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417751

RESUMO

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are apparent after a high proportion of dopamine neurons in the substantia nigra have degenerated. The vast majority of PD cases are sporadic, and the underlying pathobiological causes are poorly understood. Adults exhibit great variability in the numbers of nigral dopamine neurons, suggesting that factors during embryonic or early life regulate the development and physiology of dopaminergic neurons. Furthermore, exposure to infections and inflammation in utero has been shown to affect fetal brain development in models of schizophrenia and autism. Here, we utilize a mouse maternal infection model to examine how maternal herpesvirus infection impacts dopaminergic neuron-related gene and protein expression in the adult offspring. METHODS: Pregnant mice were injected with murine cytomegalovirus (MCMV), murine gamma herpes virus-68 (MHV68) or phosphate buffered saline (PBS) at embryonic day 8.5. Offspring were sacrificed at eight weeks of age and midbrains were processed for whole genome RNA sequencing, DNA methylation analysis, targeted protein expression and high-performance liquid chromatography for quantification of dopamine and its metabolites. RESULTS: The midbrain of adult offspring from MHV68 infected dams had significantly decreased expression of genes linked to dopamine neurons (Th, Lmx1b, and Foxa1) and increased Lrrk2, a gene involved in familial PD and PD risk that associates with neuroinflammation. Deconvolution analysis revealed that the proportion of dopamine neuron genes in the midbrain was reduced. There was an overall increase in DNA methylation in the midbrain of animals from MHV68-infected dams and pathway analyses indicated mitochondrial dysfunction, with reductions in genes associated with ATP synthesis, mitochondrial respiratory chain, and mitochondrial translation in the offspring of dams infected with MHV68. TIGAR (a negative regulator of mitophagy) and SDHA (mitochondrial complex II subunit) protein levels were increased, and the levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum were increased in these offspring compared to offspring from uninfected control dams. No such changes were observed in the offspring of dams infected with MCMV. CONCLUSION: Our data suggest that maternal infection with Herpesviridae, specifically MHV68, can trigger changes in the development of the midbrain that impact dopamine neuron physiology in adulthood. Our work is of importance for the understanding of neuronal susceptibility underlying neurodegenerative disease, with particular relevance for PD.


Assuntos
Infecções por Herpesviridae , Herpesviridae , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Herpesviridae/metabolismo , Infecções por Herpesviridae/metabolismo , Mesencéfalo/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Gravidez , Substância Negra/metabolismo
2.
Neurobiol Dis ; 166: 105654, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143968

RESUMO

Alpha-synuclein (α-syn) has been suggested to have many functions including, vesicle transport in neurons, transcriptional regulator, modulator of immune cell maturation and response, and a role as an antimicrobial peptide. This protein forms insoluble aggregates, called Lewy bodies, in several neurodegenerative diseases, termed synucleinopathies, including Parkinson's disease (PD), Multiple System Atrophy, and Lewy Body Dementia, and aggregates are also commonly found in Alzheimer's disease. Moreover, multiplications and point mutations in the gene cause rare autosomal dominant forms of parkinsonism, which resemble sporadic PD. It has been suggested that the accumulation of α-syn in the monomeric state followed by aggregation of the protein and seeding of further pathogenic α-syn aggregates are key steps in the pathogenesis of synucleinopathies. The triggers of α-syn aggregation in neurodegeneration are unknown, but inflammation caused by bacterial and viral pathogens or exposure to environmental toxins have been implicated. The purpose of this review is to present emerging evidence that α-syn may play a role in the immune response to pathogens. We present recent findings suggesting that upregulation of α-syn levels is a normal response to infections. We propose that under certain conditions (e.g., dysregulated inflammatory responses due to genetic predisposition and aging), monomeric α-syn will form oligomers that are taken up by nerve endings and undergo axonal transport to the central nervous system, where they can aggregate into pathogenic fibrils. Under unfavorable conditions, we suggest that this process can trigger neurodegenerative disease. Therefore, a deeper understanding of the roles of α-syn in the immune system could provide crucial insights into the origins of synucleinopathies.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Corpos de Lewy/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Regulação para Cima , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...