Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 511(1-2): 31-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21530485

RESUMO

Many forms of cellular stress cause an elevation of endogenous ceramide levels leading to growth arrest or apoptosis. Ceramidases (CDase) play a critical role in regulating apoptosis by hydrolyzing ceramide into sphingosine, a precursor for promitogenic sphingosine-1-phosphate. Growth factor induction of neutral CDase (nCDase) has been shown to have a cytoprotective effect against cytokine-induced increases in ceramide levels. To further define the physiological regulation of nCDase, we identified a 200 bp promoter region and demonstrated that serum activated this proximal promoter, which correlated with a serum-induced increase in human nCDase mRNA expression. Computational analysis revealed a putative cis-element for AP-1, a transcription factor activated by serum. Electrophoretic mobility shift assays demonstrated that the identified transcriptional response element binds to AP-1 transcription factors. RNA interference-mediated knockdown of the AP-1 subunit, c-Jun, inhibited the activity of the human nCDase proximal promoter, whereas, c-Jun overexpression increased promoter activity, which directly correlated with human nCDase mRNA transcription, decreased ceramide mass, and protection against caspase 3/7-dependent apoptosis. Taken together, our findings suggest that c-Jun/AP-1 signaling may, in part, regulate serum-induced human nCDase gene transcription.


Assuntos
Ceramidase Neutra/genética , Fator de Transcrição AP-1/metabolismo , Apoptose/genética , Apoptose/fisiologia , Sequência de Bases , Sítios de Ligação/genética , Ceramidas/metabolismo , Meios de Cultura , Primers do DNA/genética , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes fos , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição , Transdução de Sinais , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/genética
2.
Am J Physiol Heart Circ Physiol ; 295(4): H1657-68, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18723771

RESUMO

Diglycerides (DGs) are phospholipid-derived second messengers that regulate PKC-dependent signaling pathways. Distinct species of DGs are generated from inflammatory cytokines and growth factors. Growth factors increase diacyl- but not ether-linked DG species, whereas inflammatory cytokines predominately generate alkyl, acyl- and alkenyl, acyl-linked DG species in rat mesenchymal cells. These DG species have been shown to differentially regulate protein kinase C (PKC) isotypes. Ester-linked diacylglycerols activate PKC-epsilon and cellular proliferation in contrast to ether-linked DGs, which lead to growth arrest through the inactivation of PKC-epsilon. It is now hypothesized that ether-linked DGs inhibit mitogenesis through the inactivation of ERK and/or Akt signaling cascades. We demonstrate that cell-permeable ether-linked DGs reduce vascular smooth muscle cell growth by inhibiting platelet-derived growth factor-stimulated ERK in a PKC-epsilon-dependent manner. This inhibition is specific to the ERK pathway, since ether-linked DGs do not affect growth factor-induced activation of other family members of the MAPKs, including p38 MAPK and c-Jun NH(2)-terminal kinases. We also demonstrate that ether-linked DGs reduce prosurvival phosphatidylinositol 3-kinase (PI3K)/Akt signaling, independent of PKC-epsilon, by diminishing an interaction between the subunits of PI3K and not by affecting protein phosphatase 2A or lipid (phosphatase and tensin homologue deleted in chromosome 10) phosphatases. Taken together, our studies identify ether-linked DGs as potential adjuvant therapies to limit vascular smooth muscle migration and mitogenesis in atherosclerotic and restenotic models.


Assuntos
Proliferação de Células , Diglicerídeos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Éteres de Glicerila/metabolismo , Músculo Liso Vascular/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Becaplermina , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-sis , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
Vasc Dis Prev ; 5(3): 200-210, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19946459

RESUMO

OBJECTIVE: Drug eluting stents have recently been associated with the increased risk of adverse thrombogenic events and/or late luminal loss, which is highly associated with incomplete re-endothelialization. The increased risks behoove the design of alternative delivery modalities and/or drugs that do not compromise the re-endotheliaization process. The objective of the present study is to elucidate the biological mechanism(s) by which non-stent-based delivery modalities for the anti-proliferative lipid metabolite, C(6)-ceramide, could lead to a reduction in arterial injury after angioplasty. RESULTS: Immunohistochemical studies in rabbit and porcine models suggest that C(6)-ceramide-coated balloon catheters limit arterial stenosis without inhibiting endothelial wound healing responses. Specifically, C(6)-ceramide-coated balloon catheters reduce internal elastica injury with a corresponding reduction in medial fracture length in a 28-day porcine coronary artery stretch model. In addition, C(6)-ceramide decreases the formation of the fibrin matrix to possibly augment the subsequent wound healing response. We hypothesized that differential metabolism of exogenous ceramide by coronary endothelial and smooth muscle cells could explain the apparent discrepancy between the anti-proliferative actions of ceramide and the pro-wound healing responses of ceramide. Human coronary artery endothelial cells (HCAEC), in contrast to human coronary artery smooth muscle cells (HCASMC), preferentially express ceramide kinase and form ceramide-1-phosphate, which promotes endothelial cell survival. CONCLUSION: Differential metabolism of ceramide between HCASMC and HCAEC offers a mechanism by which ceramide preferentially limits smooth muscle cell growth, in the presence of active wound healing. The combinatorial ability of ceramide to limit vascular smooth muscle proliferation and promote re-endothelialization, offers the potential for C(6)-ceramide-coated catheters to serve as adjuncts to stent-based modalities or as a stand-alone treatment.

4.
J Biol Chem ; 282(17): 12450-7, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17308302

RESUMO

We have previously demonstrated that hexanoyl-D-erythro-sphingosine (C(6)-ceramide), an anti-mitogenic cell-permeable lipid metabolite, limited vascular smooth muscle growth by abrogating trauma-induced Akt activity in a stretch injury model of neointimal hyperplasia. Furthermore, ceramide selectively and directly activated protein kinase C zeta (PKC zeta) to suppress Akt-dependent mitogenesis. To further analyze the interaction between ceramide and PKC zeta, the ability of ceramide to localize within highly structured lipid microdomains (rafts) and activate PKC zeta was investigated. Using rat aorta vascular smooth muscle cells (A7r5), we now demonstrate that C(6)-ceramide treatment results in an increased localization and phosphorylation of PKC zeta within caveolin-enriched lipid microdomians to inactivate Akt. In addition, ceramide specifically reduced the association of PKC zeta with 14-3-3, a scaffold protein localized to less structured regions within membranes. Pharmacological disruption of highly structured lipid microdomains resulted in abrogation of ceramide-activated, PKC zeta-dependent Akt inactivation, whereas molecular strategies suggest that ceramide-dependent PKC zeta phosphorylation of Akt3 at Ser(34) was necessary for ceramide-induced vascular smooth muscle cell growth arrest. Taken together, these data demonstrate that structured membrane microdomains are necessary for ceramide-induced activation of PKC zeta and resultant diminished Akt activity, leading to vascular smooth muscle cell growth arrest.


Assuntos
Ceramidas/farmacologia , Microdomínios da Membrana/enzimologia , Mitose/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Proteína Quinase C/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Caveolinas/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Hiperplasia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Túnica Íntima/lesões , Túnica Íntima/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...