Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(40): 26262-26270, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073153

RESUMO

Bacterial biofilms, often impenetrable to antibiotic medications, are a leading cause of poor wound healing. The prognosis is worse for wounds with biofilms of antimicrobial-resistant (AMR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and multi-drug resistant Pseudomonas aeruginosa (MDR-PA). Resistance hinders initial treatment of standard-of-care antibiotics. The persistence of MRSA, MRSE, and/or MDR-PA often allows acute infections to become chronic wound infections. The water-soluble hydrophilic properties of low-molecular-weight (600 Da) branched polyethylenimine (600 Da BPEI) enable easy drug delivery to directly attack AMR and biofilms in the wound environment as a topical agent for wound treatment. To mitigate toxicity issues, we have modified 600 Da BPEI with polyethylene glycol (PEG) in a straightforward one-step reaction. The PEG-BPEI molecules disable ß-lactam resistance in MRSA, MRSE, and MDR-PA while also having the ability to dissolve established biofilms. PEG-BPEI accomplishes these tasks independently, resulting in a multifunction potentiation agent. We envision wound treatment with antibiotics given topically, orally, or intravenously in which external application of PEG-BPEIs disables biofilms and resistance mechanisms. In the absence of a robust pipeline of new drugs, existing drugs and regimens must be re-evaluated as combination(s) with potentiators. The PEGylation of 600 Da BPEI provides new opportunities to meet this goal with a single compound whose multifunction properties are retained while lowering acute toxicity.

2.
ACS Macro Lett ; 9(7): 964-968, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648608

RESUMO

Fluorinated molecules containing reactive functionalities are of great interest to the materials community as these compounds can be used to prepare fluorinated polymers with desirable physical and electronic properties. Despite their potential, many of these compounds are limited by their synthesis which generally requires transition-metal-catalyzed coupling reactions or harsh fluorinating conditions. Perfluoroheteroaromatic compounds provide a unique solution to this problem as compounds such as perfluoropyridine can undergo SNAr reactions with a wide range of simple nucleophiles in a controlled and regioselective manner. Herein we report the transition-metal-free synthesis of a pool of highly soluble high aromatic content (HAC) perfluoropyridine-based thermosetting precursors and compounds of interest which can be easily obtained from readily available chemical precursors using simple nucleophilic chemistries. These thermally active monomers cure readily, in 350-400 °C temperature ranges, into highly densified polyaryelene networks and demonstrate decomposition temperatures well above 400 °C and high char yields at 900 °C, making these promising materials for high-temperature applications as well as templates for carbon-based nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...