Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(1): 16, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332456

RESUMO

Maintaining global food security in the context of climate changes will be an important challenge in the next century. Improving abiotic stress tolerance of major crops such as wheat can contribute to this goal. This can be achieved by the identification of the genes involved and their use to develop tools for breeding programs aiming to generate better adapted cultivars. Recently, we identified the wheat TaZFP13D gene encoding Zinc Finger Protein 13D as a new gene improving water-stress tolerance. The current work analyzes the TaZFP13D-dependent transcriptome modifications that occur in well-watered and dehydration conditions to better understand its function during normal growth and during drought. Plants that overexpress TaZFP13D have a higher biomass under well-watered conditions, indicating a positive effect of the protein on growth. Survival rate and stress recovery after a severe drought stress are improved compared to wild-type plants. The latter is likely due the higher activity of key antioxidant enzymes and concomitant reduction of drought-induced oxidative damage. Conversely, down-regulation of TaZFP13D decreases drought tolerance and protection against drought-induced oxidative damage. RNA-Seq transcriptome analysis identified many genes regulated by TaZFP13D that are known to improve drought tolerance. The analysis also revealed several genes involved in the photosynthetic electron transfer chain known to improve photosynthetic efficiency and chloroplast protection against drought-induced ROS damage. This study highlights the important role of TaZFP13D in wheat drought tolerance, contributes to unravel the complex regulation governed by TaZFPs, and suggests that it could be a promising marker to select wheat cultivars with higher drought tolerance.


Assuntos
Transcriptoma , Água , Água/metabolismo , Triticum/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal
2.
BMC Plant Biol ; 20(1): 144, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264833

RESUMO

BACKGROUND: Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speed up functional gene characterization. RESULTS: We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant's life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected. CONCLUSIONS: This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.


Assuntos
Adaptação Fisiológica , Proteínas de Plantas/metabolismo , Vírus de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Dedos de Zinco CYS2-HIS2 , Secas , Perfilação da Expressão Gênica/métodos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Triticum/virologia , Água/fisiologia
3.
Plant Physiol ; 176(3): 1919-1931, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269575

RESUMO

Understanding the genetic and molecular bases of gene function is of increasing importance to harness their potential to produce plants with novel traits. One important objective is the improvement of plant productivity to meet future demands in food crop production. Gene function is mostly characterized through overexpression or silencing in transgenic plants. This approach is a lengthy procedure, especially in cereals. Plant viral expression systems can be used for rapid expression of proteins. However, current systems have a small cargo capacity and have mostly been used for gene silencing. Here, a four-component barley stripe mosaic virus-based system with high cargo capacity was constructed for the rapid and stable expression of recombinant proteins in different plant species, allowing function analyses at different stages of development. Fluorescent marker proteins are expressed at high levels within 1 week, and a proof of efficient function analysis is shown using the aluminum malate transporter1 gene. In addition to the ability of gene cotransformation, this work demonstrates that the four-component barley stripe mosaic virus-based system allows the overexpression of cDNAs of up to 2,100 nucleotides (encoding a protein of ∼78 kD), thereby providing an invaluable tool to accelerate functional genomics and proteomic research in monocot and dicot species.


Assuntos
Técnicas Genéticas , Proteínas de Plantas/metabolismo , Vírus de Plantas/metabolismo , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas , Triticum/genética , Triticum/virologia
4.
Plant Methods ; 13: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400854

RESUMO

BACKGROUND: The barley stripe mosaic virus (BSMV) has become a popular vector to study gene function in cereals. However, studies have been limited to gene silencing in leaves of barley or wheat. In addition, the method produces high variability between different leaves and plants. To overcome these limitations, we explored the potential of modifying the inoculation protocol for BSMV gene overexpression. An improved light, oxygen or voltage-sensing (iLOV) domain-based fluorescent protein was used as a reporter of gene expression to monitor the infection and spread of BSMV. Tobacco (Nicotiana benthamiana) leaves were infected via agroinfiltration and the leaves were homogenized to extract the BSMV particles and inoculate wheat tissues using the traditional leaf abrasion method or by incubation during seed imbibition in a Petri dish. RESULTS: Compared to the leaf abrasion method, the seed imbibition method resulted in a high and uniform detection of iLOV in both roots and leaves of different wheat cultivars and other monocot and dicot species within 7 days after germination. The progression of viral infection via the imbibition method as measured by the expression of iLOV was more stable in different organs and tissues and is transmissible to the next generation. CONCLUSION: Our results show that BSMV can be used as a vector for the expression of small genes such as iLOV in wheat roots and leaves. The inoculation by seed imbibition allows genes to be expressed rapidly and uniformly in wheat and different monocot and dicot species compared to the traditional leaf abrasion method. It also produces high successful transformation as early as 7 days post infection allowing gene function studies during the first generation of infected plants. Furthermore, the method is simple, rapid, and inexpensive compared to the production of transgenic plants.

5.
Mol Genet Genomics ; 291(2): 873-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26638714

RESUMO

The C1-2i wheat Q-type C2H2 zinc finger protein (ZFP) transcription factor subclass has been reported to play important roles in plant stress responses. This subclass of ZFPs has not been studied in hexaploid wheat (Triticum aestivum) and we aimed to identify all members of this subclass and evaluate their responses to different abiotic stresses causing oxidative stress. Exploiting the recently published wheat draft genome sequence, we identified 53 members (including homoeologs from A, B and D genomes) of the C1-2i wheat Q-type C2H2 ZFPs (TaZFPs) representing 21 genes. Evolution analysis revealed that 9 TaZFPs members are directly inherited from the parents Triticum urartu and Aegilops tauschii, while 15 diverged through neoploidization events. This TaZFP subclass is responsive to the oxidative stress generator H2O2 and to high light, drought stress and flooding. Most TaZFPs are responsive to H2O2 (37/53), high light (44/53), flooding (31/53) or drought (37/53); 32 TaZFPs were up-regulated by at least 3 stresses and 16 were responsive to all stresses tested. A large number of these TaZFPs were physically mapped on different wheat draft genome sequences with known markers useful for QTL mapping. Our results show that the C1-2i subclass of TaZFPs is associated with responses to different abiotic stresses and that most TaZFPs (30/53 or 57 %) are located on group 5 chromosomes known to be involved in environment adaptation. Detailed characterization of these novel wheat TaZFPs and their association to QTL or eQTL may help to design wheat cultivars with improved tolerance to abiotic stress.


Assuntos
Proteínas de Plantas/genética , Transcriptoma/genética , Triticum/genética , Dedos de Zinco/genética , Mapeamento Cromossômico , Secas , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Peróxido de Hidrogênio/toxicidade , Luz , Proteínas de Plantas/biossíntese , Estresse Fisiológico/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
6.
BMC Genomics ; 16: 339, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25903161

RESUMO

BACKGROUND: Wheat is a major staple crop with broad adaptability to a wide range of environmental conditions. This adaptability involves several stress and developmentally responsive genes, in which microRNAs (miRNAs) have emerged as important regulatory factors. However, the currently used approaches to identify miRNAs in this polyploid complex system focus on conserved and highly expressed miRNAs avoiding regularly those that are often lineage-specific, condition-specific, or appeared recently in evolution. In addition, many environmental and biological factors affecting miRNA expression were not yet considered, resulting still in an incomplete repertoire of wheat miRNAs. RESULTS: We developed a conservation-independent technique based on an integrative approach that combines machine learning, bioinformatic tools, biological insights of known miRNA expression profiles and universal criteria of plant miRNAs to identify miRNAs with more confidence. The developed pipeline can potentially identify novel wheat miRNAs that share features common to several species or that are species specific or clade specific. It allowed the discovery of 199 miRNA candidates associated with different abiotic stresses and development stages. We also highlight from the raw data 267 miRNAs conserved with 43 miRBase families. The predicted miRNAs are highly associated with abiotic stress responses, tolerance and development. GO enrichment analysis showed that they may play biological and physiological roles associated with cold, salt and aluminum (Al) through auxin signaling pathways, regulation of gene expression, ubiquitination, transport, carbohydrates, gibberellins, lipid, glutathione and secondary metabolism, photosynthesis, as well as floral transition and flowering. CONCLUSION: This approach provides a broad repertoire of hexaploid wheat miRNAs associated with abiotic stress responses, tolerance and development. These valuable resources of expressed wheat miRNAs will help in elucidating the regulatory mechanisms involved in freezing and Al responses and tolerance mechanisms as well as for development and flowering. In the long term, it may help in breeding stress tolerant plants.


Assuntos
Biologia Computacional/métodos , MicroRNAs/análise , RNA de Plantas/análise , Triticum/crescimento & desenvolvimento , Triticum/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Aprendizado de Máquina , Poliploidia , Especificidade da Espécie , Estresse Fisiológico
7.
J Exp Bot ; 65(9): 2271-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24683181

RESUMO

The einkorn wheat mutant mvp-1 (maintained vegetative phase 1) has a non-flowering phenotype caused by deletions including, but not limited to, the genes CYS, PHYC, and VRN1. However, the impact of these deletions on global gene expression is still unknown. Transcriptome analysis showed that these deletions caused the upregulation of several pathogenesis-related (PR) and jasmonate-responsive genes. These results suggest that jasmonates may be involved in flowering and vernalization in wheat. To test this hypothesis, jasmonic acid (JA) and methyl jasmonate (MeJA) content in mvp and wild-type plants was measured. The content of JA was comparable in all plants, whereas the content of MeJA was higher by more than 6-fold in mvp plants. The accumulation of MeJA was also observed in vernalization-sensitive hexaploid winter wheat during cold exposure. This accumulation declined rapidly once plants were deacclimated under floral-inductive growth conditions. This suggests that MeJA may have a role in floral transition. To confirm this result, we treated vernalization-insensitive spring wheat with MeJA. The treatment delayed flowering with significant downregulation of both TaVRN1 and TaFT1 genes. These data suggest a role for MeJA in modulating vernalization and flowering time in wheat.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Triticum/genética , Temperatura Baixa , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Plantas/metabolismo , Estações do Ano , Transcrição Gênica , Triticum/metabolismo
8.
Plant Cell Physiol ; 54(11): 1751-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23969557

RESUMO

This study compared the photosynthetic performance and the global gene expression of the winter hardy wheat Triticum aestivum cv Norstar grown under non-acclimated (NA) or cold-acclimated (CA) conditions at either ambient CO2 or elevated CO2. CA Norstar maintained comparable light-saturated and CO2-saturated rates of photosynthesis but lower quantum requirements for PSII and non-photochemical quenching relative to NA plants even at elevated CO2. Neither NA nor CA plants were sensitive to feedback inhibition of photosynthesis at elevated CO2. Global gene expression using microarray combined with bioinformatics analysis revealed that genes affected by elevated CO2 were three times higher in NA (1,022 genes) compared with CA (372 genes) Norstar. The most striking effect was the down-regulation of genes involved in the plant defense responses in NA Norstar. In contrast, cold acclimation reversed this down-regulation due to the cold induction of genes involved in plant pathogenesis resistance; and cellular and chloroplast protection. These results suggest that elevated CO2 has less impact on plant performance and productivity in cold-adapted winter hardy plants in the northern climates compared with warmer environments. Selection for cereal cultivars with constitutively higher expression of biotic stress defense genes may be necessary under elevated CO2 during the warm growth period and in warmer climates.


Assuntos
Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica de Plantas , Fotossíntese , Triticum/fisiologia , Aclimatação , Regulação para Baixo , Perfilação da Expressão Gênica , Luz , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Transpiração Vegetal , Estações do Ano , Estresse Fisiológico , Temperatura , Transcriptoma , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/efeitos da radiação , Regulação para Cima
9.
Mol Genet Genomics ; 287(7): 575-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684814

RESUMO

The transition to flowering in winter wheat requires prolonged exposure to low temperature, a process called vernalization. This process is regulated by a genetic pathway that involves at least three genes, Triticum aestivum VERNALIZATION 1 (TaVRN1), Triticum aestivum VERNALIZATION 2 (TaVRN2) and Triticum aestivum FLOWERING LOCUS T-like 1 (TaFT1). These genes regulate flowering by integrating environmental and developmental cues. To determine whether the expression of these genes is associated with the chromatin methylation state during vernalization in wheat, the level of two markers of histone modifications, the activator histone H3 trimethylation of lysine 4 (H3K4me3) and the repressor histone H3 trimethylation of lysine 27 (H3K27me3) were measured at the promoter regions of these three genes. Bioinformatics analysis of these promoters demonstrates the presence of conserved cis-acting elements in the promoters of the three vernalization genes, TaVRN1, TaVRN2 and TaFT1. These elements are targeted by common transcription factors in the vernalization responsive cereals. These promoters also contain the functional "units" PRE/TRE targeted by Polycomb and Trithorax proteins that maintain repressed or active transcription states of developmentally regulated genes. These proteins are known to be associated with the regulation of H3K4me3 and H3K27me3. Expression studies indicate that TaVRN1 and TaFT1 are up-regulated by vernalization in winter wheat. This up-regulation is associated with increased level of the activator H3K4me3 with no change in the level of the repressor H3K27me3 at the promoter region. This study shows that the flowering transition induced by vernalization in winter wheat is associated with histone methylation at the promoter level of TaVRN1 and TaFT1 while the role of these markers is less evident in TaVRN2 repression. This may represent part of the cellular memory of vernalization in wheat.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Triticum/genética , Triticum/metabolismo , Sequência de Bases , Western Blotting , Temperatura Baixa , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Metilação , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Triticum/crescimento & desenvolvimento
10.
BMC Genomics ; 9: 400, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18752686

RESUMO

BACKGROUND: Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive) that differ in their response to Al were performed. RESULTS: Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. CONCLUSION: In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate) needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.


Assuntos
Alumínio/toxicidade , Genes de Plantas/efeitos dos fármacos , Triticum/genética , Alumínio/metabolismo , Ácido Ascórbico/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Triticum/efeitos dos fármacos , Triticum/metabolismo
11.
BMC Plant Biol ; 8: 86, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18671872

RESUMO

BACKGROUND: Lipocalins are a large and diverse family of small, mostly extracellular proteins implicated in many important functions. This family has been studied in bacteria, invertebrate and vertebrate animals but little is known about these proteins in plants. We recently reported the identification and molecular characterization of the first true lipocalins from plants, including the Apolipoprotein D ortholog AtTIL identified in the plant model Arabidopsis thaliana. This study aimed to determine its physiological role in planta. RESULTS: Our results demonstrate that the AtTIL lipocalin is involved in modulating tolerance to oxidative stress. AtTIL knock-out plants are very sensitive to sudden drops in temperature and paraquat treatment, and dark-grown plants die shortly after transfer to light. These plants accumulate a high level of hydrogen peroxide and other ROS, which causes an oxidative stress that is associated with a reduction in hypocotyl growth and sensitivity to light. Complementation of the knock-out plants with the AtTIL cDNA restores the normal phenotype. On the other hand, overexpression enhances tolerance to stress caused by freezing, paraquat and light. Moreover, this overexpression delays flowering and maintains leaf greenness. Microarray analyses identified several differentially-regulated genes encoding components of oxidative stress and energy balance. CONCLUSION: This study provides the first functional evidence that a plant lipocalin is involved in modulating tolerance to oxidative stress. These findings are in agreement with recently published data showing that overexpression of ApoD enhances tolerance to oxidative stress and increases life span in mice and Drosophila. Together, the three papers strongly support a similar function of lipocalins in these evolutionary-distant species.


Assuntos
Apolipoproteínas D/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lipocalinas/metabolismo , Estresse Oxidativo , Homologia de Sequência de Aminoácidos , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/fisiologia , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Hipocótilo/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Fatores de Tempo
12.
Plant Cell Physiol ; 49(8): 1237-49, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18635580

RESUMO

Two different inducers of CBF expression (ICE1-like genes), TaICE41 and TaICE87, were isolated from a cDNA library prepared from cold-treated wheat aerial tissues. TaICE41 encodes a protein of 381 aa with a predicted MW of 39.5 kDa while TaICE87 encodes a protein of 443 aa with a predicted MW of 46.5 kDa. TaICE41 and TaICE87 share 46% identity while they share 50 and 47% identity with Arabidopsis AtICE1 respectively. Expression analysis revealed that mRNA accumulation was not altered by cold treatment suggesting that both genes are expressed constitutively. Gel mobility shift analysis showed that TaICE41 and TaICE87 bind to different MYC elements in the wheat TaCBFIVd-B9 promoter. Transient expression assays in Nicotiana benthamiana, showed that both TaICE proteins can activate TaCBFIVd-B9 transcription. The different affinities of TaICE41 and TaICE87 for MYC variants suggest that ICE binding specificity may be involved in the differential expression of wheat CBF genes. Furthermore, analysis of MYC elements demonstrates that a specific variant is present in the wheat CBF group IV that is associated with freezing tolerance. Overexpression of either TaICE41 or TaICE87 genes in Arabidopsis enhanced freezing tolerance only upon cold acclimation suggesting that other factors induced by low temperature are required for their activity. The increased freezing tolerance in transgenic Arabidopsis is associated with a higher expression of the cold responsive activators AtCBF2, AtCBF3, and of several cold-regulated genes.


Assuntos
Genes de Plantas , Fatores de Transcrição/genética , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Congelamento , Conformação Molecular , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo
13.
Mol Genet Genomics ; 277(5): 533-54, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17285309

RESUMO

Most temperate plants tolerate both chilling and freezing temperatures whereas many species from tropical regions suffer chilling injury when exposed to temperatures slightly above freezing. Cold acclimation induces the expression of cold-regulated genes needed to protect plants against freezing stress. This induction is mediated, in part, by the CBF transcription factor family. To understand the evolution and function of this family in cereals, we identified and characterized 15 different CBF genes from hexaploid wheat. Our analyses reveal that wheat species, T. aestivum and T. monococcum, may contain up to 25 different CBF genes, and that Poaceae CBFs can be classified into 10 groups that share a common phylogenetic origin and similar structural characteristics. Six of these groups (IIIc, IIId, IVa, IVb, IVc and IVd) are found only in the Pooideae suggesting they represent the CBF response machinery that evolved recently during colonization of temperate habitats. Expression studies reveal that five of the Pooideae-specific groups display higher constitutive and low temperature inducible expression in the winter cultivar, and a diurnal regulation pattern during growth at warm temperature. The higher constitutive and inducible expression within these CBF groups is an inherited trait that may play a predominant role in the superior low temperature tolerance capacity of winter cultivars and possibly be a basis of genetic variability in freezing tolerance within the Pooideae subfamily.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Fatores de Transcrição/genética , Triticum/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Temperatura Baixa , Grão Comestível/genética , Evolução Molecular , Dados de Sequência Molecular , Família Multigênica , Proteínas de Plantas , Poaceae/genética , Poliploidia , Fatores de Transcrição/metabolismo , Triticum/fisiologia
14.
BMC Genomics ; 7: 149, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16772040

RESUMO

BACKGROUND: Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. RESULTS: We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. CONCLUSION: We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals.


Assuntos
Aclimatação/genética , Bases de Dados Genéticas/provisão & distribuição , Etiquetas de Sequências Expressas , Recursos em Saúde , Triticum/genética , Aminoácidos/metabolismo , Proteínas Anticongelantes/genética , Transporte Biológico/genética , Análise por Conglomerados , Temperatura Baixa , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas/metabolismo , Genes de Plantas , Genoma de Planta , Metabolismo dos Lipídeos/genética , Modelos Biológicos , Fotossíntese/genética , Fitosteróis/química , Transdução de Sinais/genética , Fatores de Transcrição/genética
15.
Plant Biotechnol J ; 2(5): 381-7, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17168885

RESUMO

Progress in freezing tolerance (FT) improvement through plant breeding approaches has met with little success in the last 50 years. Engineering plants for greater FT through plant transformation is one possible way to reduce the damage caused by freezing. Here, we report an improvement of the selection procedure and the transfer of the wheat Wcor410a acidic dehydrin gene in strawberry. The encoded protein has previously been shown to be associated with the plasma membrane, and its level of accumulation has been correlated with the degree of FT in different wheat genotypes. The WCOR410 protein was expressed in transgenic strawberry at a level comparable with that in cold-acclimated wheat. Freezing tests showed that cold-acclimated transgenic strawberry leaves had a 5 degrees C improvement of FT over wild-type or transformed leaves not expressing the WCOR410 protein. However, no difference in FT was found between the different plants under non-acclimated conditions, suggesting that the WCOR410 protein needs to be activated by another factor induced during cold acclimation. These data demonstrate that the WCOR410 protein prevents membrane injury and greatly improves FT in leaves of transgenic strawberry. A better understanding of the limiting factors allowing its activation may open up the way for engineering FT in different plant organs, and may find applications for the cryopreservation of human tissues and organs.

16.
Physiol Plant ; 115(1): 81-86, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12010470

RESUMO

Al was shown to elicit the induction of several pathogenesis-related genes, suggesting that a common signalling pathway may be involved in the early response to Al and pathogens. However, we found no evidence of oxidative burst involving either H2O2 or O2- during the first hours of Al exposure distinguishing the early response to Al from a common response to pathogen infection. We identified a strong superoxide dismutase insensitive nitro blue tetrazolium (NBT) reduction activity in the root tips of control plants. This activity was rapidly inhibited by Al exposure in the meristematic/distal transition zones of roots in all species examined. In wheat (Triticum aestivum), the inhibition of NBT reduction occurred in less than 1 min in vivo suggesting that Al either directly blocks an enzyme responsible for NBT reduction, or affects a signal pathway involved in the regulation of this activity. The sensitivity of NBT reduction to KCN and NaN3 suggests that an enzymatic, rather than a chemical reaction is involved. In tolerant plants, the inhibition of NBT reduction caused by Al was reversed within 24 h of exposure. The level of recovery was a function of the degree of Al tolerance. We show that NBT reduction is a simple biochemical marker allowing the rapid identification of tolerant individuals within a segregating population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...