Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
1.
bioRxiv ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39257749

RESUMO

Enzymes that proceed through multistep reaction mechanisms often utilize complex, polar active sites positioned with sub-angstrom precision to mediate distinct chemical steps, which makes their de novo construction extremely challenging. We sought to overcome this challenge using the classic catalytic triad and oxyanion hole of serine hydrolases as a model system. We used RFdiffusion 1 to generate proteins housing catalytic sites of increasing complexity and varying geometry, and a newly developed ensemble generation method called ChemNet to assess active site geometry and preorganization at each step of the reaction. Experimental characterization revealed novel serine hydrolases that catalyze ester hydrolysis with catalytic efficiencies ( k cat / K m ) up to 3.8 × 10 3 M -1 s -1 , closely match the design models (Cα RMSDs < 1 Å), and have folds distinct from natural serine hydrolases. In silico selection of designs based on active site preorganization across the reaction coordinate considerably increased success rates, enabling identification of new catalysts in screens of as few as 20 designs. Our de novo buildup approach provides insight into the geometric determinants of catalysis that complements what can be obtained from structural and mutational studies of native enzymes (in which catalytic group geometry and active site makeup cannot be so systematically varied), and provides a roadmap for the design of industrially relevant serine hydrolases and, more generally, for designing complex enzymes that catalyze multi-step transformations.

2.
J Am Chem Soc ; 146(36): 25058-25066, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39207888

RESUMO

The indole moiety is ubiquitous in natural products and pharmaceuticals. C-H borylation of the benzenoid moiety of indoles is a challenging task, especially at the C5 position. We have combined computational and experimental studies to introduce multiple noncovalent interactions, especially dispersion, between the substrate and catalytic ligand to realize C5-borylation of indoles with high reactivity and selectivity. The successful computational predictions of new ligands should be suitable for ligand design in other transition-metal catalyzed reactions.

3.
J Am Chem Soc ; 146(30): 20678-20684, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39023428

RESUMO

Methylation of arginine (Arg) residues on histones creates a new binding epitope, enabling recognition by aromatic cage binding pockets in Tudor domains; these protein-protein interactions (PPIs) govern gene expression. Despite their biological importance, the molecular details of methylated Arg recognition are poorly understood. While the desolvation, hydrogen bonding, and guanidinium stacking of methylated Arg have been explored in model systems and proposed to contribute to binding, direct interactions between the methyl groups and the aromatic residues in the binding pocket have not previously been investigated. Herein, we mechanistically study the CH3-π interactions between the SPIN1 triple Tudor domain and histone asymmetric dimethylarginine. We find that these CH3-π interactions are electrostatically tunable, exhibiting cation-π character, albeit attenuated relative to cation-π interactions with quaternary ammonium ions, offering key insight into how methylation of Arg alters its binding epitope to enable new PPIs.


Assuntos
Arginina , Histonas , Eletricidade Estática , Arginina/química , Arginina/análogos & derivados , Arginina/metabolismo , Histonas/química , Histonas/metabolismo , Domínio Tudor , Metilação , Ligação Proteica , Modelos Moleculares
4.
Chem Sci ; 15(27): 10448-10454, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994402

RESUMO

Hydroxybenzylammonium compounds can undergo a reversible 1,4- or 1,6-elimination to afford quinone methide intermediates after release of the amine. These molecules are useful for the reversible conjugation of payloads to amines. We hypothesized that aromaticity could be used to alter the rate of reversibility as a distinct thermodynamic driving force. We describe the use of density functional theory (DFT) calculations to determine the effect of aromaticity on the rate of release of the amine from hydroxybenzylammonium compounds. Namely, the aromatic scaffold affects the dearomatization reaction to reduce the kinetic barrier and prevent the reversibility of the amine elimination. We consequently synthesized a small library of polycyclic hydroxybenzylammoniums, which resulted in a range of release half-lives from 18 minutes to 350 hours. The novel mechanistic insight provided herein significantly expands the range of release rates amenable to hydroxybenzylammonium-containing compounds. This work provides another way to affect the rate of payload release in hydroxybenzylammoniums.

5.
Nat Catal ; 7(5): 585-592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39006156

RESUMO

Intermolecular functionalization of tertiary C-H bonds to construct fully substituted stereogenic carbon centers represents a formidable challenge: without the assistance of directing groups, state-of-the-art catalysts struggle to introduce chirality to racemic tertiary sp 3 -carbon centers. Direct asymmetric functionalization of such centers is a worthy reactivity and selectivity goal for modern biocatalysis. Here we present an engineered nitrene transferase (P411-TEA-5274), derived from a bacterial cytochrome P450, that is capable of aminating tertiary C-H bonds to provide chiral α-tertiary primary amines with high efficiency (up to 2300 total turnovers) and selectivity (up to >99% enantiomeric excess (e.e.)). The construction of fully substituted stereocenters with methyl and ethyl groups underscores the enzyme's remarkable selectivity. A comprehensive substrate scope study demonstrates the biocatalyst's compatibility with diverse functional groups and tertiary C-H bonds. Mechanistic studies elucidate how active-site residues distinguish between the enantiomers and enable the enzyme to perform this transformation with excellent enantioselectivity.

6.
J Am Chem Soc ; 146(31): 21389-21400, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38875215

RESUMO

We present an efficient one-pot photochemical skeletal editing protocol for the transformation of pyridines into diverse bicyclic pyrazolines and pyrazoles under mild conditions. The method requires no metals, photocatalysts, or additives and allows for the selective removal of specific carbon atoms from pyridines, allowing for unprecedented versatility. Our approach offers a convenient and efficient means for the late-stage modification of complex drug molecules by replacing the core pyridine skeleton. Moreover, we have successfully scaled up this procedure in stop-flow and flow-chemistry systems, showcasing its applicability to intricate transformations such as the Diels-Alder reaction, hydrogenation, [3 + 2] cycloaddition, and Heck reaction. Through control experiments and DFT calculations, we provide insights into the mechanistic underpinnings of this skeletal editing protocol.

7.
J Am Chem Soc ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860601

RESUMO

Emission from crystalline organic solids is often quenched by nonemissive energy-transfer deexcitation processes. While dispersion of fluorophores in polymers or other hosts has been used to enhance the emission intensity, this strategy results in randomization of guest orientation and optical losses at grain boundaries. Here, we report the doping of inherently nonemissive single crystals of anilinium bromide with three fluorescent organic molecules. The doping process equips the crystal with emission characteristics that tune from blue to deep orange. The emission intensity can be reversibly modulated by ferroelastic twinning, which causes the material to function as a multiemissive force sensor. This approach opens up new pathways in the manipulation of emissive properties in organic crystals and may have substantial implications for optoelectronic devices and sensors.

8.
J Am Chem Soc ; 146(27): 18706-18713, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941192

RESUMO

The reaction between 1,2,4,5-tetrazines and alkenes in polar solvents proceeds through a Diels-Alder cycloaddition along the C-C axis (C3/C6 cycloaddition) of the tetrazine, followed by dinitrogen loss. By contrast, the reactions of 1,2,4,5-tetrazines with enamines in hexafluoroisopropanol (HFIP) give 1,2,4-triazine products stemming from a formal Diels-Alder addition across the N-N axis (N1/N4 cycloaddition). We explored the mechanism of this interesting solvent effect through DFT calculations in detail and revealed a novel reaction pathway characterized by C-N bond formation, deprotonation, and a 3,3-sigmatropic rearrangement. The participation of an HFIP molecule was found to be crucial to the N1/N4 selectivity over C3/C6 due to the more favored initial C-N bond formation than C-C bond formation.

9.
J Am Chem Soc ; 146(25): 17150-17157, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870114

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants linked to harmful health effects. Currently employed PFAS destruction methods are energy-intensive and often produce shorter-chain and recalcitrant partially fluorinated byproducts. We report the mineralization of five fluorotelomer compounds via a base-mediated degradation using NaOH and mild temperatures (120 °C) in a mixture of DMSO:H2O (8:1 v/v). The studied fluorotelomers have varying polar head groups-carboxylic acids, sulfonic acids, alcohols, and phosphonic acids, which are the most common polar head groups used in commercial and industrial applications. The degradation intermediates and byproducts were characterized using 1H, 13C, and 19F NMR spectroscopy. Density functional theory computations at the M06-2X/6-311 + G(2d,p)-SMD-(DMSO) level were consistent with the observed intermediates and guided an overall mechanistic hypothesis. Degradation of each fluorotelomer occurs through a similar process, in which the nonfluorinated carbons and the first fluorinated carbon are cleaved from the remaining perfluoroalkyl fragment, which degrades through previously identified pathways. These findings provide important insight into PFAS degradation processes and suggest that PFAS containing at least one C-H bond within or adjacent to its fluoroalkyl chain can be degraded under these mild conditions. Many PFAS in current use as well as recalcitrant fluorinated byproducts generated from other PFAS degradation methods are candidates for this approach.

10.
Angew Chem Int Ed Engl ; 63(32): e202406676, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-38695853

RESUMO

We describe a full account of our synthetic strategy leading to the first total synthesis of the manzamine alkaloid lissodendoric acid A . These efforts demonstrate that strained cyclic allenes are valuable synthetic building blocks and can be employed efficiently in total synthesis.


Assuntos
Alcaloides , Estereoisomerismo , Alcaloides/síntese química , Alcaloides/química , Estrutura Molecular
11.
J Am Chem Soc ; 146(22): 14927-14934, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767459

RESUMO

Bicyclo[1.1.0]butane-containing compounds feature a unique chemical reactivity, trigger "strain-release" reaction cascades, and provide novel scaffolds with considerable utility in the drug discovery field. We report the synthesis of new bicyclo[1.1.0]butane-linked heterocycles by a nucleophilic addition of bicyclo[1.1.0]butyl anions to 8-isocyanatoquinoline, or, alternatively, iminium cations derived from quinolines and pyridines. The resulting bicyclo[1.1.0]butanes are converted with high regioselectivity to unprecedented bridged heterocycles in a rhodium(I)-catalyzed annulative rearrangement. The addition/rearrangement process tolerates a surprisingly large range of functional groups. Subsequent chemo- and stereoselective synthetic transformations of urea, alkene, cyclopropane, and aniline moieties of the 1-methylene-5-azacyclopropa[cd]indene scaffolds provide several additional new heterocyclic building blocks. X-ray structure-validated quantum mechanical DFT calculations of the reaction pathway indicate the intermediacy of rhodium carbenoid and metallocyclobutane species.

12.
J Am Chem Soc ; 146(23): 16237-16247, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38811005

RESUMO

As the chemistry that surrounds the field of strained hydrocarbons, such as bicyclo[1.1.0]butane, continues to expand, it becomes increasingly advantageous to develop alternative reactivity modes that harness their unique properties to access new regions of chemical space. Herein, we report the use of photoredox catalysis to promote the single-electron oxidation of bicyclo[1.1.0]butanes. The synthetic utility of the resulting radical cations is highlighted by their ability to undergo highly regio- and diastereoselective [2π + 2σ] cycloaddition reactions. The most notable feature of this transformation is the breadth of alkene classes that can be employed, including nonactivated alkenes, which have so far been elusive for previous strategies. A rigorous mechanistic investigation, in conjunction with DFT computation, was undertaken in order to better understand the physical nature of bicyclo[1.1.0]butyl radical cations and thus provides a platform from which further studies into the synthetic applications of these intermediates can be built upon.

13.
J Am Chem Soc ; 146(25): 16963-16970, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38691630

RESUMO

Despite the significant achievements in dearomatization and C-H functionalization of arenes, the arene ring-opening remains a largely unmet challenge and is underdeveloped due to the high bond dissociation energy and strong resonance stabilization energy inherent in aromatic compounds. Herein, we demonstrate a novel carbene assisted strategy for arene ring-opening. The understanding of the mechanism by our DFT calculations will stimulate wide application of bulk arene chemicals for the synthesis of value-added polyconjugated chain molecules. Various aryl azide derivatives now can be directly converted into valuable polyconjugated enynes, avoiding traditional synthesis including multistep unsaturated precursors, poor selectivity control, and subsequent transition-metal catalyzed cross-coupling reactions. The simple conditions required were demonstrated in the late-stage modification of complex molecules and fused ring compounds. This chemistry expands the horizons of carbene chemistry and provides a novel pathway for arene ring-opening.

14.
Nat Commun ; 15(1): 4630, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821941

RESUMO

Radical substitution is a useful method to functionalize heterocycles, as in the venerable Minisci reaction. Empirically observed regiochemistries indicate that the CF2H radical has a nucleophilic character similar to alkyl radicals, but the CF3 radical is electrophilic. While the difference between •CH3 and •CF3 is well understood, the reason that one and two Fs make little difference but the third has a large effect is puzzling. DFT calculations with M06-2X both reproduce experimental selectivities and also lead to an explanation of this difference. Theoretical methods reveal how the F inductive withdrawal and conjugative donation alter radical properties, but only CF3 becomes decidedly electrophilic toward heterocycles. Here, we show a simple model to explain the radical orbital energy trends and resulting nucleophilicity or electrophilicity of fluorinated radicals.

15.
J Am Chem Soc ; 146(18): 12365-12374, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656163

RESUMO

Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.


Assuntos
Cisteína , Ouro , Cisteína/química , Ouro/química , Peptídeos/química , Compostos Organoáuricos/química , Compostos Organoáuricos/síntese química , Estrutura Molecular
16.
Environ Sci Technol ; 58(17): 7505-7515, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619820

RESUMO

The reaction of peracetic acid (PAA) and Fe(II) has recently gained attention due to its utility in wastewater treatment and its role in cloud chemistry. Aerosol-cloud interactions, partly mediated by aqueous hydroxyl radical (OH) chemistry, represent one of the largest uncertainties in the climate system. Ambiguities remain regarding the sources of OH in the cloud droplets. Our research group recently proposed that the dark and light-driven reaction of Fe(II) with peracids may be a key contributor to OH formation, producing a large burst of OH when aerosol particles take up water as they grow to become cloud droplets, in which reactants are consumed within 2 min. In this work, we quantify the OH production from the reaction of Fe(II) and PAA across a range of physical and chemical conditions. We show a strong dependence of OH formation on ultraviolet (UV) wavelength, with maximum OH formation at λ = 304 ± 5 nm, and demonstrate that the OH burst phenomenon is unique to Fe(II) and peracids. Using kinetics modeling and density functional theory calculations, we suggest the reaction proceeds through the formation of an [Fe(II)-(PAA)2(H2O)2] complex, followed by the formation of a Fe(IV) complex, which can also be photoactivated to produce additional OH. Determining the characteristics of OH production from this reaction advances our knowledge of the sources of OH in cloudwater and provides a framework to optimize this reaction for OH output for wastewater treatment purposes.


Assuntos
Aerossóis , Radical Hidroxila , Ácido Peracético , Radical Hidroxila/química , Ácido Peracético/química , Luz , Cinética , Ferro/química
17.
Org Lett ; 26(17): 3602-3606, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38648196

RESUMO

We report an experimental and computational investigation of the likely mechanism of a cascade reaction. The reaction involves an intramolecular Diels-Alder reaction, followed by a C-C bond cleavage, to afford a complex bridged bicyclic product. As multiple reaction pathways could be envisioned for the latter step, the mechanism of the C-C bond cleavage step was investigated. Two reasonable reaction pathways were evaluated. Both computations and experiments indicate that the C-C bond cleavage step proceeds by a retro-carbonyl-ene pathway rather than a retro-aldol pathway. This report underscores the synergy between computational and experimental studies and establishes the mechanism of an interesting complexity-generating transformation.

18.
Nat Catal ; 7(1): 65-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38584987

RESUMO

Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Methods for the asymmetric synthesis of these molecules are therefore highly desirable, particularly through the selective functionalization of unreactive aliphatic C-H bonds. Here we show the development of a strategy for the asymmetric synthesis of ß-, γ-, and δ-lactams via hemoprotein-catalysed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation yielding the desired lactam products in high yields, high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Additionally, an alkaloid natural product and a drug molecule were synthesized chemoenzymatically in much fewer steps (7-8 vs. 11-12) than previously reported, further demonstrating the power of biosynthetic strategy for the preparation of complex bioactive molecules.

19.
Nat Chem ; 16(5): 817-826, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351380

RESUMO

Catalysis with engineered enzymes has provided more efficient routes for the production of active pharmaceutical agents. However, the potential of biocatalysis to assist in early-stage drug discovery campaigns remains largely untapped. In this study, we have developed a biocatalytic strategy for the construction of sp3-rich polycyclic compounds via the intramolecular cyclopropanation of benzothiophenes and related heterocycles. Two carbene transferases with complementary regioisomer selectivity were evolved to catalyse the stereoselective cyclization of benzothiophene substrates bearing diazo ester groups at the C2 or C3 position of the heterocycle. The detailed mechanisms of these reactions were elucidated by a combination of crystallographic and computational analyses. Leveraging these insights, the substrate scope of one of the biocatalysts could be expanded to include previously unreactive substrates, highlighting the value of integrating evolutionary and rational strategies to develop enzymes for new-to-nature transformations. The molecular scaffolds accessed here feature a combination of three-dimensional and stereochemical complexity with 'rule-of-three' properties, which should make them highly valuable for fragment-based drug discovery campaigns.


Assuntos
Biocatálise , Compostos Policíclicos , Compostos Policíclicos/química , Compostos Policíclicos/metabolismo , Estereoisomerismo , Ciclização , Tiofenos/química , Tiofenos/metabolismo , Modelos Moleculares , Evolução Molecular Direcionada
20.
J Am Chem Soc ; 146(8): 5232-5241, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38350439

RESUMO

In pursuit of potent pharmaceutical candidates and to further improve their chemical traits, small ring systems can serve as a potential starting point. Small ring units have the additional merit of loaded strain at their core, making them suitable reactants as they can capitalize on this intrinsic driving force. With the introduction of cyclobutenone as a strained precursor to ketene, the photocycloaddition with another strained unit, bicyclo[1.1.0]butane (BCB), enables the reactivity of both π-units in the transient ketene. This double strain-release driven [2π+2σ]-photocycloaddition promotes the synthesis of diverse heterobicyclo[2.1.1]hexane units, a pharmaceutically relevant bioisostere. The effective reactivity under catalyst-free conditions with a high functional group tolerance defines its synthetic utility. Experimental mechanistic studies and density functional theory (DFT) calculations suggest that the [2π+2σ]-photocycloaddition takes place via a triplet mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA