Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Urolithiasis ; 52(1): 60, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581591

RESUMO

Proof-of-concept of photonic lithotripsy in an in vitro setting and its ability to fragment the most common stone types is demonstrated. Effectiveness of different classes of photonic nanoparticles in fragmenting human stones is assessed. De-identified human stones were collected after institutional approval. Stones of a size range between 2-4 mm were rehydrated in simulated urine for 24 h. Stones were then coated with a solution of nanoparticles prior to activation with either a 785 nm or 1320 nm near-infrared energy source. Photonic lithotripsy achieved greater than 70% success rate in fragmentating calcium oxalate monohydrate stones using carbon-based nanoparticles for both near-infrared wavelengths. For gold-based nanoparticles, there was a similar success rate with the 785 nm wavelength but a significant decrease when using the 1320 nm wavelength energy source. All stones fragmented with the energy source at a distance ≥ 20 mm from the stone's surface. Limitations include the use of mixed-composition stones, a lack of complete stone immersion in liquid during treatment, and smaller stone size. Different classes of nanoparticles when excited with a near-infrared energy source can fragment common stone types in vitro. This technology has the potential to change the way we approach and treat patients with urolithiasis in a clinical setting.


Assuntos
Litotripsia , Urolitíase , Humanos , Urolitíase/terapia , Oxalato de Cálcio , Nanotecnologia
2.
Nano Lett ; 23(13): 5981-5988, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37358929

RESUMO

Near-infrared activated nanomaterials have been reported for biomedical applications ranging from photothermal tumor destruction to biofilm eradication and energy-gated drug delivery. However, the focus so far has been on soft tissues, and little is known about energy delivery to hard tissues, which have thousand-fold higher mechanical strength. We present photonic lithotripsy with carbon and gold nanomaterials for fragmenting human kidney stones. The efficacy of stone comminution is dependent on the size and photonic properties of the nanomaterials. Surface restructuring and decomposition of calcium oxalate to calcium carbonate support the contribution of photothermal energy to stone failure. Photonic lithotripsy has several advantages over current laser lithotripsy, including low operating power, noncontact laser operation (distances of at least 10 mm), and ability to break all common stones. Our observations can inspire the development of rapid, minimally invasive techniques for kidney stone treatment and extrapolate to other hard tissues such as enamel and bone.


Assuntos
Cálculos Renais , Litotripsia a Laser , Litotripsia , Humanos , Litotripsia/métodos , Cálculos Renais/terapia , Litotripsia a Laser/métodos , Luz , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...