Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 32(1): 51-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23629811

RESUMO

The blood-brain barrier (BBB) is a barrier that prevents free access of blood-derived substances to the brain through the tight junctions and maintains a specialized brain environment. Circumventricular organs (CVOs) lack the typical BBB. The fenestrated vasculature of the sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows parenchyma cells to sense a variety of blood-derived information, including osmotic ones. In the present study, we utilized immunohistochemistry to examine changes in the expression of NG2 and platelet-derived growth factor receptor beta (PDGFRB) in the OVLT, SFO and AP of adult mice during chronic osmotic stimulation. The expression of NG2 and PDGFRB was remarkably prominent in pericytes, although these angiogenesis-associated proteins are highly expressed at pericytes of developing immature vasculature. The chronic salt loading prominently increased the expression of NG2 in the OVLT and SFO and that of PDGFRB in the OVLT, SFO and AP. The vascular permeability of low-molecular-mass tracer fluorescein isothiocyanate was increased significantly by chronic salt loading in the OVLT and SFO but not AP. In conclusion, the present study demonstrates changes in pericyte expression of NG2 and PDGFRB and vascular permeability in the sensory CVOs by chronic osmotic stimulation, indicating active participation of the vascular system in osmotic homeostasis.


Assuntos
Antígenos/metabolismo , Área Postrema/metabolismo , Permeabilidade Capilar , Hipotálamo/metabolismo , Pericitos/metabolismo , Proteoglicanas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Órgão Subfornical/metabolismo , Animais , Antígenos/genética , Área Postrema/irrigação sanguínea , Área Postrema/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hipotálamo/irrigação sanguínea , Hipotálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Osmorregulação , Pericitos/citologia , Proteoglicanas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Cloreto de Sódio/farmacologia , Órgão Subfornical/irrigação sanguínea , Órgão Subfornical/citologia
2.
J Neurosci Res ; 91(6): 757-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23526379

RESUMO

The circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), median eminence (ME), and area postrema (AP), allow parenchyma cells to sense a variety of blood-derived substances and/or secreted peptides into blood circulation. In the present study, we examined continuous neurogenesis in the CVOs of adult mice. The immunohistochemistry of neural progenitor cell (NPC) marker proteins revealed that Math1- and Mash1-positive cells were observed in the discrete regions of CVOs, including the capillary plexus in the OVLT, the internal zone of the ME, and the lateral zone in the AP. A few Mash1- and Math1-positive cells were seen throughout the SFO, and many Math1- but not Mash1-positive cells were observed at the arcuate nucleus. Math-positive cells were often seen to localize in close proximity to the vasculature. Bromodeoxyuridine (BrdU) immunohistochemistry revealed the incorporation of BrdU in a subpopulation of Mash1-, Math1-, HuC/D-, and microtubule-associated protein 2 (MAP2)-positive cells. Mash1- and Math1-positive cells expressed exclusively high level of plasminogen, whereas a subpopulation of HuC/D- and MAP2-positive neurons expressed low or undetectable level of plasminogen. Thus, the present study demonstrates that newborn cells express NPC marker proteins and plasminogen to localize closely at vascular matrix and moreover differentiate into neurons expressing mature neuron marker proteins, indicating that new neurons are possibly generated to integrate into new neural circuits.


Assuntos
Encéfalo/citologia , Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Animais , Encéfalo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...