Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Policy ; 122: 116-126, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345221

RESUMO

Greenhouse gas (GHG) emission inventories represent the link between national and international political actions on climate change, and climate and environmental sciences. Inventory agencies need to include, in national GHG inventories, emission and removal estimates based on scientific data following specific reporting guidance under the United Nation Framework Convention on Climate Change (UNFCCC) and the Paris Agreement, using the methodologies defined in the Intergovernmental Panel on Climate Change (IPCC) Guidelines. Often however, research communities and inventory agencies have approached the problem of climate change from different angles and by using terminologies, metrics, rules and approaches that do not always match. This is particularly true dealing with "Land Use, Land-Use Change and Forestry" (LULUCF), the most challenging among the inventory sectors to deal with, mainly because of high level of complexity of its carbon dynamics and the difficulties in disaggregating the fluxes between those caused by natural and anthropogenic processes. In this paper, we facilitate the understanding by research communities of the current (UNFCCC) and future (under the Paris Agreement) reporting requirements, and we identify the main issues and topics that should be considered when targeting improvement of the GHG inventory. In relation to these topics, we describe where and how the research community can contribute to producing useful inputs, data, methods and solutions for inventory agencies and policy makers, on the basis of available literature. However, a greater effort by both communities is desirable for closer cooperation and collaboration, for data sharing and the understanding of respective and common aims.

2.
Nat Commun ; 12(1): 1785, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741981

RESUMO

Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests. This rate does not capture spatial regrowth patterns due to environmental and disturbance drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0 Mg C ha-1 yr-1) compared to those in the east (1.3 ± 0.3 Mg C ha-1 yr-1). Disturbances reduce regrowth rates by 8-55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the potential to accumulate ~19.0 Tg C yr-1 until 2030, contributing ~5.5% to Brazil's 2030 net emissions reduction target. Implementing legal mechanisms to protect and expand secondary forests whilst supporting old-growth conservation is, therefore, key to realising their potential as a nature-based climate solution.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Mudança Climática , Florestas , Clima Tropical , Algoritmos , Biomassa , Brasil , Conservação dos Recursos Naturais/métodos , Ecossistema , Incêndios , Agricultura Florestal , Geografia , Modelos Teóricos , Imagens de Satélites/métodos , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
3.
Sci Data ; 7(1): 287, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859937

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Data ; 7(1): 269, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796858

RESUMO

The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which steeply decreased between 1985 and 2018 throughout Brazil, is essential for estimating the global carbon balance and quantifying the provision of ecosystem services. To know the long-term increment, extent, and age of secondary forests is crucial; however, these variables are yet poorly quantified. Here we developed a 30-m spatial resolution dataset of the annual increment, extent, and age of secondary forests for Brazil over the 1986-2018 period. Land-use and land-cover maps from MapBiomas Project (Collection 4.1) were used as input data for our algorithm, implemented in the Google Earth Engine platform. This dataset provides critical spatially explicit information for supporting carbon emissions reduction, biodiversity, and restoration policies, enabling environmental science applications, territorial planning, and subsidizing environmental law enforcement.

5.
Glob Chang Biol ; 26(3): 1085-1108, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31532049

RESUMO

To limit warming to well below 2°C, most scenario projections rely on greenhouse gas removal technologies (GGRTs); one such GGRT uses soil carbon sequestration (SCS) in agricultural land. In addition to their role in mitigating climate change, SCS practices play a role in delivering agroecosystem resilience, climate change adaptability and food security. Environmental heterogeneity and differences in agricultural practices challenge the practical implementation of SCS, and our analysis addresses the associated knowledge gap. Previous assessments have focused on global potentials, but there is a need among policymakers to operationalise SCS. Here, we assess a range of practices already proposed to deliver SCS, and distil these into a subset of specific measures. We provide a multidisciplinary summary of the barriers and potential incentives towards practical implementation of these measures. First, we identify specific practices with potential for both a positive impact on SCS at farm level and an uptake rate compatible with global impact. These focus on: (a) optimising crop primary productivity (e.g. nutrient optimisation, pH management, irrigation); (b) reducing soil disturbance and managing soil physical properties (e.g. improved rotations, minimum till); (c) minimising deliberate removal of C or lateral transport via erosion processes (e.g. support measures, bare fallow reduction); (d) addition of C produced outside the system (e.g. organic manure amendments, biochar addition); (e) provision of additional C inputs within the cropping system (e.g. agroforestry, cover cropping). We then consider economic and non-cost barriers and incentives for land managers implementing these measures, along with the potential externalised impacts of implementation. This offers a framework and reference point for holistic assessment of the impacts of SCS. Finally, we summarise and discuss the ability of extant scientific approaches to quantify the technical potential and externalities of SCS measures, and the barriers and incentives to their implementation in global agricultural systems.


Assuntos
Gases de Efeito Estufa , Agricultura , Carbono , Sequestro de Carbono , Efeito Estufa , Mudança Social , Solo
6.
Nat Commun ; 9(1): 2938, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087330

RESUMO

Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2 removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2 removal than BECCS.

7.
Nat Commun ; 9: 16179, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29465082

RESUMO

This corrects the article DOI: 10.1038/ncomms15519.

8.
Nat Commun ; 8: 15519, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555627

RESUMO

A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.


Assuntos
Clima , Ecologia , Florestas , Modelos Teóricos , Brasil , Simulação por Computador , Geografia , Pradaria , Gases de Efeito Estufa , Humanos , Chuva , Análise de Regressão , Software , Solo , Árvores
9.
Glob Chang Biol ; 22(3): 1008-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26301476

RESUMO

Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Poluição Ambiental/efeitos adversos , Solo
10.
Glob Chang Biol ; 19(9): 2893-906, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23529747

RESUMO

The high uncertainty in land-based CO2 fluxes estimates is thought to be mainly due to uncertainty in not only quantifying historical changes among forests, croplands, and grassland, but also due to different processes included in calculation methods. Inclusion of a nitrogen (N) cycle in models is fairly recent and strongly affects carbon (C) fluxes. In this study, for the first time, we use a model with C and N dynamics with three distinct historical reconstructions of land-use and land-use change (LULUC) to quantify LULUC emissions and uncertainty that includes the integrated effects of not only climate and CO2 but also N. The modeled global average emissions including N dynamics for the 1980s, 1990s, and 2000-2005 were 1.8 ± 0.2, 1.7 ± 0.2, and 1.4 ± 0.2 GtC yr(-1) , respectively, (mean and range across LULUC data sets). The emissions from tropics were 0.8 ± 0.2, 0.8 ± 0.2, and 0.7 ± 0.3 GtC yr(-1) , and the non tropics were 1.1 ± 0.5, 0.9 ± 0.2, and 0.7 ± 0.1 GtC yr(-1) . Compared to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, particularly in the non tropics. In the model, N limitation reduces regrowth rates of vegetation in temperate areas resulting in higher net emissions. Our results indicate that exclusion of N dynamics leads to an underestimation of LULUC emissions by around 70% in the non tropics, 10% in the tropics, and 40% globally in the 1990s. The differences due to inclusion/exclusion of the N cycle of 0.1 GtC yr(-1) in the tropics, 0.6 GtC yr(-1) in the non tropics, and 0.7 GtC yr(-1) globally (mean across land-cover data sets) in the 1990s were greater than differences due to the land-cover data in the non tropics and globally (0.2 GtC yr(-1) ). While land-cover information is improving with satellite and inventory data, this study indicates the importance of accounting for different processes, in particular the N cycle.


Assuntos
Dióxido de Carbono/análise , Nitrogênio/química , Modelos Teóricos
11.
Glob Chang Biol ; 19(8): 2285-302, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23505220

RESUMO

Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.


Assuntos
Agricultura , Mudança Climática , Abastecimento de Alimentos , Agricultura Florestal , Gases , Efeito Estufa/prevenção & controle , Conservação dos Recursos Naturais , Ecossistema , Humanos
12.
Science ; 332(6025): 53-8, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21454781

RESUMO

Climate change is predicted to become a major threat to biodiversity in the 21st century, but accurate predictions and effective solutions have proved difficult to formulate. Alarming predictions have come from a rather narrow methodological base, but a new, integrated science of climate-change biodiversity assessment is emerging, based on multiple sources and approaches. Drawing on evidence from paleoecological observations, recent phenological and microevolutionary responses, experiments, and computational models, we review the insights that different approaches bring to anticipating and managing the biodiversity consequences of climate change, including the extent of species' natural resilience. We introduce a framework that uses information from different sources to identify vulnerability and to support the design of conservation responses. Although much of the information reviewed is on species, our framework and conclusions are also applicable to ecosystems, habitats, ecological communities, and genetic diversity, whether terrestrial, marine, or fresh water.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais
13.
Interface Focus ; 1(2): 212-23, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22482028

RESUMO

Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished.

14.
Science ; 310(5752): 1333-7, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16254151

RESUMO

Global change will alter the supply of ecosystem services that are vital for human well-being. To investigate ecosystem service supply during the 21st century, we used a range of ecosystem models and scenarios of climate and land-use change to conduct a Europe-wide assessment. Large changes in climate and land use typically resulted in large changes in ecosystem service supply. Some of these trends may be positive (for example, increases in forest area and productivity) or offer opportunities (for example, "surplus land" for agricultural extensification and bioenergy production). However, many changes increase vulnerability as a result of a decreasing supply of ecosystem services (for example, declining soil fertility, declining water availability, increasing risk of forest fires), especially in the Mediterranean and mountain regions.


Assuntos
Ecossistema , Agricultura , Biodiversidade , Carbono , Clima , Conservação dos Recursos Naturais , Produtos Agrícolas , Meio Ambiente , Europa (Continente) , Efeito Estufa , Humanos , Modelos Estatísticos , Modelos Teóricos , Fatores Socioeconômicos , Árvores/crescimento & desenvolvimento , População Urbana , Abastecimento de Água , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...