Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856433

RESUMO

Changes at the molecular level capacitate the plasticity displayed by the brain in response to stress stimuli. Weaning stress can trigger molecular changes that influence the physiology of the offspring. Likewise, maternal immune activation (MIA) during gestation has been associated with behavior disorders and molecular changes in the amygdala of the offspring. This study advances the understanding of the effects of pre- and postnatal stressors in amygdala gene networks. The amygdala transcriptome was profiled on female and male pigs that were either exposed to viral-elicited MIA or not and were weaned or nursed. Overall, 111 genes presented interacting or independent effects of weaning, MIA, or sex (FDR-adjusted P-value <0.05). PIGY upstream reading frame and orthodenticle homeobox 2 are genes associated with MIA-related neurological disorders, and presented significant under-expression in weaned relative to nursed pigs exposed to MIA, with a moderate pattern observed in non-MIA pigs. Enriched among the genes presenting highly over- or under-expression profiles were 24 Kyoto Encyclopedia of Genes and Genomes pathways including inflammation, and neurological disorders. Our results indicate that MIA and sex can modulate the effect of weaning stress on the molecular mechanisms in the developing brain. Our findings can help identify molecular targets to ameliorate the effects of pre- and postnatal stressors on behaviors regulated by the amygdala such as aggression and feeding.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Tonsila do Cerebelo , Animais , Comportamento Animal , Feminino , Inflamação/genética , Masculino , Poli I-C , Suínos , Transcriptoma
2.
Front Vet Sci ; 7: 561151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330688

RESUMO

The combined effects on pig behavior of maternal immune challenge during gestation followed by a second immune challenge later in life have not been studied. Porcine reproductive and respiratory syndrome virus (PRRSV) infection during gestation can elicit maternal immune activation (MIA) yet the interactions with the offspring response to a second immune challenge after birth remains unexplored. Knowledge on the response to viral challenges in rodents has been gained through the use of the viral mimetic polyinosinic-polycytidylic acid (Poly(I:C)), yet the effects of this immune stimulant on pig behavior have not been assessed. This study advances the understanding of the combined effect of MIA and a second immune challenge later in life on female and male pig behavior. Three complementary experiments enabled the development of an effective Poly(I:C) challenge in pigs, and testing the interaction between PRRSV-elicited MIA, Poly(I:C) challenge at 60 days of age, and sex on behaviors. Individual-level observations on sickness, locomotor, and social behaviors were measured 1-3 h after Poly(I:C) challenge. Vomiting, panting, lethargy, walking, laying, playing, and touching behaviors were analyzed using generalized linear mixed effect models. Results indicated that a Poly(I:C) dose of 1 mg/kg within 1 h after injection increased the incidence of laying and sickness behavior. The Poly(I:C) challenge decreased the incidence of locomotor behaviors and activity levels. Pigs exposed to MIA had lower rates of social behaviors such as playing. The combined effect of PRRSV-elicited MIA and Poly(I:C) immune challenge further sensitized the pigs to behavior disruption across sexes including changes in sternal and lateral laying, walking, lethargy, and touching incidence. Notably, the effects of Poly(I:C) immune challenge alone on behaviors tended to be more extreme in males, whereas the effects of Poly(I:C) following MIA tended to be more extreme in females. Our findings demonstrate that MIA and Poly(I:C) affected behaviors, and the viral mimetic effects shortly after injection can offer insights into the prolonged effect of postnatal viral infections on feeding, social interactions and health status. Management practices that reduce the likelihood of gestational diseases and accommodate for behavioral disruptions in the offspring can minimize the impact of MIA.

3.
Front Neurosci ; 14: 774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848554

RESUMO

The prolonged and sex-dependent impact of maternal immune activation (MIA) during gestation on the molecular pathways of the amygdala, a brain region that influences social, emotional, and other behaviors, is only partially understood. To address this gap, we investigated the effects of viral-elicited MIA during gestation on the amygdala transcriptome of pigs, a species of high molecular and developmental homology to humans. Gene expression levels were measured using RNA-Seq on the amygdala for 3-week-old female and male offspring from MIA and control groups. Among the 403 genes that exhibited significant MIA effect, a prevalence of differentially expressed genes annotated to the neuroactive ligand-receptor pathway, glutamatergic functions, neuropeptide systems, and cilium morphogenesis were uncovered. Genes in these categories included corticotropin-releasing hormone receptor 2, glutamate metabotropic receptor 4, glycoprotein hormones, alpha polypeptide, parathyroid hormone 1 receptor, vasointestinal peptide receptor 2, neurotensin, proenkephalin, and gastrin-releasing peptide. These categories and genes have been associated with the MIA-related human neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Gene network reconstruction highlighted differential vulnerability to MIA effects between sexes. Our results advance the understanding necessary for the development of multifactorial therapies targeting immune modulation and neurochemical dysfunction that can ameliorate the effects of MIA on offspring behavior later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...