Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991601

RESUMO

Soil temperature is one of the key factors to be considered in precision agriculture to increase crop production. This study is designed to compare the effectiveness of a land surface model (Noah Multiparameterization (Noah-MP)) against a traditional crop model (Environmental Policy Integrated Climate Model (EPIC)) in estimating soil temperature. A sets of soil temperature estimates, including three different EPIC simulations (i.e., using different parameterizations) and a Noah-MP simulations, is compared to ground-based measurements from across the Central Valley in California, USA, during 2000-2019. The main conclusion is that relying only on one set of model estimates may not be optimal. Furthermore, by combining different model simulations, i.e., by taking the mean of two model simulations to reconstruct a new set of soil temperature estimates, it is possible to improve the performance of the single model in terms of different statistical metrics against the reference ground observations. Containing ratio (CR), Euclidean distance (dist), and correlation co-efficient (R) calculated for the reconstructed mean improved by 52%, 58%, and 10%, respectively, compared to both model estimates. Thus, the reconstructed mean estimates are shown to be more capable of capturing soil temperature variations under different soil characteristics and across different geographical conditions when compared to the parent model simulations.

2.
J Environ Manage ; 302(Pt B): 114085, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800764

RESUMO

The coronavirus disease 2019 (COVID-19) has been first reported in December 2019 and rapidly spread worldwide. As other severe acute respiratory syndromes, it is a widely discussed topic whether seasonality affects the COVID-19 infection spreading. This study presents two different approaches to analyse the impact of social activity factors and weather variables on daily COVID-19 cases at county level over the Continental U.S. (CONUS). The first one is a traditional statistical method, i.e., Pearson correlation coefficient, whereas the second one is a machine learning algorithm, i.e., random forest regression model. The Pearson correlation is analysed to roughly test the relationship between COVID-19 cases and the weather variables or the social activity factor (i.e. social distance index). The random forest regression model investigates the feasibility of estimating the number of county-level daily confirmed COVID-19 cases by using different combinations of eight factors (county population, county population density, county social distance index, air temperature, specific humidity, shortwave radiation, precipitation, and wind speed). Results show that the number of daily confirmed COVID-19 cases is weakly correlated with the social distance index, air temperature and specific humidity through the Pearson correlation method. The random forest model shows that the estimation of COVID-19 cases is more accurate with adding weather variables as input data. Specifically, the most important factors for estimating daily COVID-19 cases are the population and population density, followed by the social distance index and the five weather variables, with temperature and specific humidity being more critical than shortwave radiation, wind speed, and precipitation. The validation process shows that the general values of correlation coefficients between the daily COVID-19 cases estimated by the random forest model and the observed ones are around 0.85.


Assuntos
COVID-19 , Humanos , Umidade , SARS-CoV-2 , Temperatura , Estados Unidos , Tempo (Meteorologia)
3.
Sci Total Environ ; 750: 141592, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882494

RESUMO

Various recent studies have shown that societal efforts to mitigate (e.g. "lockdown") the outbreak of the 2019 coronavirus disease (COVID-19) caused non-negligible impacts on the environment, especially air quality. To examine if interventional policies due to COVID-19 have had a similar impact in the US state of California, this paper investigates the spatiotemporal patterns and changes in air pollution before, during and after the lockdown of the state, comparing the air quality measurements in 2020 with historical averages from 2015 to 2019. Through time series analysis, a sudden drop and uptick of air pollution are found around the dates when shutdown and reopening were ordered, respectively. The spatial patterns of nitrogen dioxide (NO2) tropospheric vertical column density (TVCD) show a decreasing trend over the locations of major powerplants and an increasing trend over residential areas near interactions of national highways. Ground-based observations around California show a 38%, 49%, and 31% drop in the concentration of NO2, carbon monoxide (CO) and particulate matter 2.5 (PM2.5) during the lockdown (March 19-May 7) compared to before (January 26-March 18) in 2020. These are 16%, 25% and 19% sharper than the means of the previous five years in the same periods, respectively. Our study offers evidence of the environmental impact introduced by COVID-19, and insight into related economic influences.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infecções por Coronavirus , Coronavirus , Pandemias , Pneumonia Viral , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Betacoronavirus , COVID-19 , California , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
4.
Protein Sci ; 28(12): 2127-2143, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31599029

RESUMO

Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM-binding domains in the human proteome, the PDZ domain. These domains bind the extreme C-terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer-PDZ, a program that filters and compares all motif-satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C-terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously-relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif-satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer-PDZ is a versatile program to investigate potential PDZ interactions. This proof-of-concept work is poised to enable similar types of analyses for other SLiM-binding domains (e.g., MotifAnalyzer-Kinase). MotifAnalyzer-PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu.


Assuntos
Proteínas do Tecido Nervoso/química , Domínios PDZ , Software , Coanoflagelados/química , Humanos , Ligação Proteica , Especificidade por Substrato
5.
Artigo em Inglês | MEDLINE | ID: mdl-33869235

RESUMO

Toward qualifying hydrologic changes in the High Mountain Asia (HMA) region, this study explores the use of a hyper-resolution (1 km) land data assimilation (DA) framework developed within the NASA Land Information System using the Noah Multi-parameterization Land Surface Model (Noah-MP) forced by the meteorological boundary conditions from Modern-Era Retrospective analysis for Research and Applications, Version 2 data. Two different sets of DA experiments are conducted: (1) the assimilation of a satellite-derived snow cover map (MOD10A1) and (2) the assimilation of the NASA MEaSUREs landscape freeze/thaw product from 2007 to 2008. The performance of the snow cover assimilation is evaluated via comparisons with available remote sensing-based snow water equivalent product and ground-based snow depth measurements. For example, in the comparison against ground-based snow depth measurements, the majority of the stations (13 of 14) show slightly improved goodness-of-fit statistics as a result of the snow DA, but only four are statistically significant. In addition, comparisons to the satellite-based land surface temperature products (MOD11A1 and MYD11A1) show that freeze/thaw DA yields improvements (at certain grid cells) of up to 0.58 K in the root-mean-square error (RMSE) and 0.77 K in the absolute bias (relative to model-only simulations). In the comparison against three ground-based soil temperature measurements along the Himalayas, the bias and the RMSE in the 0-10 cm soil temperature are reduced (on average) by 10 and 7%, respectively. The improvements in the top layer of soil estimates also propagate through the deeper soil layers, where the bias and the RMSE in the 10-40 cm soil temperature are reduced (on average) by 9 and 6%, respectively. However, no statistically significant skill differences are observed for the freeze/thaw DA system in the comparisons against ground-based surface temperature measurements at mid-to-low altitude. Therefore, the two proposed DA schemes show the potential of improving the predictability of snow mass, surface temperature, and soil temperature states across HMA, but more ground-based measurements are still required, especially at high-altitudes, in order to document a more statistically significant improvement as a result of the two DA schemes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33479598

RESUMO

This study explores the uncertainties in terrestrial water budget estimation over High Mountain Asia (HMA) using a suite of uncoupled land surface model (LSM) simulations. The uncertainty in the water balance components of precipitation (P), evapotranspiration (ET), runoff(R), and terrestrial water storage (TWS) is significantly impacted by the uncertainty in the driving meteorology, with precipitation being the most important boundary condition. Ten gridded precipitation datasets along with a mix of model-, satellite-, and gauge-based products, are evaluated first to assess their suitability for LSM simulations over HMA. The datasets are evaluated by quantifying the systematic and random errors of these products as well as the temporal consistency of their trends. Though the broader spatial patterns of precipitation are generally well captured by the datasets, they differ significantly in their means and trends. In general, precipitation datasets that incorporate information from gauges are found to have higher accuracy with low Root Mean Square Errors and high correlation coefficient values. An ensemble of LSM simulations with selected subset of precipitation products is then used to produce the mean annual fluxes and their uncertainty over HMA in P, ET, and R to be 2.11±0.45, 1.26±0.11, and 0.85±0.36 mm per day, respectively. The mean annual estimates of the surface mass (water) balance components from this model ensemble are comparable to global estimates from prior studies. However, the uncertainty/spread of P, ET, and R is significantly larger than the corresponding estimates from global studies. A comparison of ET, snow cover fraction, and changes in TWS estimates against remote sensing-based references confirms the significant role of the input meteorology in influencing the water budget characterization over HMA and points to the need for improving meteorological inputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...