Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Circulation ; 149(20): 1598-1610, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38739695

RESUMO

Defining mechanisms of cardiomyocyte proliferation should guide the understanding of endogenous cardiac regeneration and could lead to novel treatments for diseases such as myocardial infarction. In the neonatal heart, energy metabolic reprogramming (phenotypic alteration of glucose, fatty acid, and amino acid metabolism) parallels cell cycle arrest of cardiomyocytes. The metabolic reprogramming occurring shortly after birth is associated with alterations in blood oxygen levels, metabolic substrate availability, hemodynamic stress, and hormone release. In the adult heart, myocardial infarction causes metabolic reprogramming but these changes cannot stimulate sufficient cardiomyocyte proliferation to replace those lost by the ischemic injury. Some putative pro-proliferative interventions can induce the metabolic reprogramming. Recent data show that altering the metabolic enzymes PKM2 [pyruvate kinase 2], LDHA [lactate dehydrogenase A], PDK4 [pyruvate dehydrogenase kinase 4], SDH [succinate dehydrogenase], CPT1b [carnitine palmitoyl transferase 1b], or HMGCS2 [3-hydroxy-3-methylglutaryl-CoA synthase 2] is sufficient to partially reverse metabolic reprogramming and promotes adult cardiomyocyte proliferation. How metabolic reprogramming regulates cardiomyocyte proliferation is not clearly defined. The possible mechanisms involve biosynthetic pathways from the glycolysis shunts and the epigenetic regulation induced by metabolic intermediates. Metabolic manipulation could represent a new approach to stimulate cardiac regeneration; however, the efficacy of these manipulations requires optimization, and novel molecular targets need to be defined. In this review, we summarize the features, triggers, and molecular regulatory networks responsible for metabolic reprogramming and discuss the current understanding of metabolic reprogramming as a critical determinant of cardiomyocyte proliferation.


Assuntos
Proliferação de Células , Miócitos Cardíacos , Miócitos Cardíacos/metabolismo , Humanos , Animais , Metabolismo Energético , Reprogramação Celular , Regeneração , Reprogramação Metabólica
2.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405864

RESUMO

Hypothyroidism is commonly detected in patients with medulloblastoma (MB). A possible link between thyroid hormone (TH) signaling and MB pathogenicity has not been reported. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.

3.
Circulation ; 149(12): e964-e985, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38344851

RESUMO

In 1924, the founders of the American Heart Association (AHA) envisioned an international society focused on the heart and aimed at facilitating research, disseminating information, increasing public awareness, and developing public health policy related to heart disease. This presidential advisory provides a comprehensive review of the past century of cardiovascular and stroke science, with a focus on the AHA's contributions, as well as informed speculation about the future of cardiovascular science into the next century of the organization's history. The AHA is a leader in fundamental, translational, clinical, and population science, and it promotes the concept of the "learning health system," in which a continuous cycle of evidence-based practice leads to practice-based evidence, permitting an iterative refinement in clinical evidence and care. This advisory presents the AHA's journey over the past century from instituting professional membership to establishing extraordinary research funding programs; translating evidence to practice through clinical practice guidelines; affecting systems of care through quality programs, certification, and implementation; leading important advocacy efforts at the federal, state and local levels; and building global coalitions around cardiovascular and stroke science and public health. Recognizing an exciting potential future for science and medicine, the advisory offers a vision for even greater impact for the AHA's second century in its continued mission to be a relentless force for longer, healthier lives.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Acidente Vascular Cerebral , Estados Unidos , Humanos , American Heart Association , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/epidemiologia , Prática Clínica Baseada em Evidências , Mediastino , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/epidemiologia
4.
Circ Res ; 134(4): 393-410, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275112

RESUMO

BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Complexo de Endopeptidases do Proteassoma , Camundongos , Ratos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Transgênicos , Peptídeos/metabolismo , Mamíferos
5.
Redox Biol ; 67: 102909, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801856

RESUMO

Few therapies have produced significant improvement in cardiac structure and function after ischemic cardiac injury (ICI). Our possible explanation is activation of local inflammatory responses negatively impact the cardiac repair process following ischemic injury. Factors that can alter immune response, including significantly altered cytokine levels in plasma and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI is a valid strategy for reducing infarct size and damage after myocardial injury. Our previous studies showed that cortical bone stem cells (CBSCs) possess reparative effects after ICI. In our current study, we have identified that the beneficial effects of CBSCs appear to be mediated by miRNA in their extracellular vesicles (CBSC-EV). Our studies showed that CBSC-EV treated animals demonstrated reduced scar size, attenuated structural remodeling, and improved cardiac function versus saline treated animals. These effects were linked to the alteration of immune response, with significantly altered cytokine levels in plasma, and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI. Our detailed in vitro studies demonstrated that CBSC-EV are enriched in miR-182/183 that mediates the pro-reparative polarization and metabolic reprogramming in macrophages, including enhanced OXPHOS rate and reduced ROS, via Ras p21 protein activator 1 (RASA1) axis under Lipopolysaccharides (LPS) stimulation. In summary, CBSC-EV deliver unique molecular cargoes, such as enriched miR-182/183, that modulate the immune response after ICI by regulating macrophage polarization and metabolic reprogramming to enhance repair.


Assuntos
Traumatismos Cardíacos , MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Miocárdio/metabolismo , Infarto do Miocárdio/genética , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Oxirredução , Camundongos Endogâmicos C57BL
6.
Am J Physiol Heart Circ Physiol ; 325(4): H702-H719, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539452

RESUMO

Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.


Assuntos
Cardiopatias , Hipotireoidismo , Gravidez , Feminino , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiopatias/patologia , Hipertrofia/metabolismo , Hipertrofia/patologia , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Cardiomegalia/metabolismo
8.
Circ Res ; 133(2): 120-137, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313722

RESUMO

BACKGROUND: Beta-2 adrenergic receptors (ß2ARs) but not beta-2 adrenergic receptors (ß1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and ß adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS: Global signaling between LTCCs and ß adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and ß1AR or ß2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when ß2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and ß2AR was lost. Interestingly, local stimulation of ß1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via ß1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the ß2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream ß1AR and results in an increase in LTCC current. CONCLUSIONS: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via ß2AR, but not ß1AR. This may explain how ß2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.


Assuntos
Caveolina 3 , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Canais de Cálcio Tipo L/metabolismo
10.
Circ Res ; 132(6): 723-740, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36799218

RESUMO

BACKGROUND: A recent study suggests that systemic hypoxemia in adult male mice can induce cardiac myocytes to proliferate. The goal of the present experiments was to confirm these results, provide new insights on the mechanisms that induce adult cardiomyocyte cell cycle reentry, and to determine if hypoxemia also induces cardiomyocyte proliferation in female mice. METHODS: EdU-containing mini pumps were implanted in 3-month-old, male and female C57BL/6 mice. Mice were placed in a hypoxia chamber, and the oxygen was lowered by 1% every day for 14 days to reach 7% oxygen. The animals remained in 7% oxygen for 2 weeks before terminal studies. Myocyte proliferation was also studied with a mosaic analysis with double markers mouse model. RESULTS: Hypoxia induced cardiac hypertrophy in both left ventricular (LV) and right ventricular (RV) myocytes, with LV myocytes lengthening and RV myocytes widening and lengthening. Hypoxia induced an increase (0.01±0.01% in normoxia to 0.11±0.09% in hypoxia) in the number of EdU+ RV cardiomyocytes, with no effect on LV myocytes in male C57BL/6 mice. Similar results were observed in female mice. Furthermore, in mosaic analysis with double markers mice, hypoxia induced a significant increase in RV myocyte proliferation (0.03±0.03% in normoxia to 0.32±0.15% in hypoxia of RFP+ myocytes), with no significant change in LV myocyte proliferation. RNA sequencing showed upregulation of mitotic cell cycle genes and a downregulation of Cullin genes, which promote the G1 to S phase transition in hypoxic mice. There was significant proliferation of nonmyocytes and mild cardiac fibrosis in hypoxic mice that did not disrupt cardiac function. Male and female mice exhibited similar gene expression following hypoxia. CONCLUSIONS: Systemic hypoxia induces a global hypertrophic stress response that was associated with increased RV proliferation, and while LV myocytes did not show increased proliferation, our results minimally confirm previous reports that hypoxia can induce cardiomyocyte cell cycle activity in vivo.


Assuntos
Hipóxia , Miócitos Cardíacos , Camundongos , Masculino , Feminino , Animais , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Hipóxia/complicações , Hipóxia/metabolismo , Proliferação de Células , Oxigênio/metabolismo , Hipertrofia/complicações , Hipertrofia/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 324(4): H443-H460, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763506

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) is defined as HF with an ejection fraction (EF) ≥ 50% and elevated cardiac diastolic filling pressures. The underlying causes of HFpEF are multifactorial and not well-defined. A transgenic mouse with low levels of cardiomyocyte (CM)-specific inducible Cavß2a expression (ß2a-Tg mice) showed increased cytosolic CM Ca2+, and modest levels of CM hypertrophy, and fibrosis. This study aimed to determine if ß2a-Tg mice develop an HFpEF phenotype when challenged with two additional stressors, high-fat diet (HFD) and Nω-nitro-l-arginine methyl ester (l-NAME, LN). Four-month-old wild-type (WT) and ß2a-Tg mice were given either normal chow (WT-N, ß2a-N) or HFD and/or l-NAME (WT-HFD, WT-LN, WT-HFD-LN, ß2a-HFD, ß2a-LN, and ß2a-HFD-LN). Some animals were treated with the histone deacetylase (HDAC) (hypertrophy regulators) inhibitor suberoylanilide hydroxamic acid (SAHA) (ß2a-HFD-LN-SAHA). Echocardiography was performed monthly. After 4 mo of treatment, terminal studies were performed including invasive hemodynamics and organs weight measurements. Cardiac tissue was collected. Four months of HFD plus l-NAME treatment did not induce a profound HFpEF phenotype in FVB WT mice. ß2a-HFD-LN (3-Hit) mice developed features of HFpEF, including increased atrial natriuretic peptide (ANP) levels, preserved EF, diastolic dysfunction, robust CM hypertrophy, increased M2-macrophage population, and myocardial fibrosis. SAHA reduced the HFpEF phenotype in the 3-Hit mouse model, by attenuating these effects. The 3-Hit mouse model induced a reliable HFpEF phenotype with CM hypertrophy, cardiac fibrosis, and increased M2-macrophage population. This model could be used for identifying and preclinical testing of novel therapeutic strategies.NEW & NOTEWORTHY Our study shows that three independent pathological stressors (increased Ca2+ influx, high-fat diet, and l-NAME) together produce a profound HFpEF phenotype. The primary mechanisms include HDAC-dependent-CM hypertrophy, necrosis, increased M2-macrophage population, fibroblast activation, and myocardial fibrosis. A role for HDAC activation in the HFpEF phenotype was shown in studies with SAHA treatment, which prevented the severe HFpEF phenotype. This "3-Hit" mouse model could be helpful in identifying novel therapeutic strategies to treat HFpEF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Camundongos , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Camundongos Transgênicos , Fibrose , Fenótipo , Hipertrofia
12.
Circulation ; 147(4): 324-337, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36314132

RESUMO

BACKGROUND: Developmental cardiac tissue holds remarkable capacity to regenerate after injury and consists of regenerative mononuclear diploid cardiomyocytes. On maturation, mononuclear diploid cardiomyocytes become binucleated or polyploid and exit the cell cycle. Cardiomyocyte metabolism undergoes a profound shift that coincides with cessation of regeneration in the postnatal heart. However, whether reprogramming metabolism promotes persistence of regenerative mononuclear diploid cardiomyocytes enhancing cardiac function and repair after injury is unknown. Here, we identify a novel role for RNA-binding protein LIN28a, a master regulator of cellular metabolism in cardiac repair after injury. METHODS: LIN28a overexpression was tested using mouse transgenesis on postnatal cardiomyocyte numbers, cell cycle, and response to apical resection injury. With the use of neonatal and adult cell culture systems and adult and Mosaic Analysis with Double Markers myocardial injury models in mice, the effect of LIN28a overexpression on cardiomyocyte cell cycle and metabolism was tested. Last, isolated adult cardiomyocytes from LIN28a and wild-type mice 4 days after myocardial injury were used for RNA-immunoprecipitation sequencing. RESULTS: LIN28a was found to be active primarily during cardiac development and rapidly decreases after birth. LIN28a reintroduction at postnatal day (P) 1, P3, P5, and P7 decreased maturation-associated polyploidization, nucleation, and cell size, enhancing cardiomyocyte cell cycle activity in LIN28a transgenic pups compared with wild-type littermates. Moreover, LIN28a overexpression extended cardiomyocyte cell cycle activity beyond P7 concurrent with increased cardiac function 30 days after apical resection. In the adult heart, LIN28a overexpression attenuated cardiomyocyte apoptosis, enhanced cell cycle activity, cardiac function, and survival in mice 12 weeks after myocardial infarction compared with wild-type littermate controls. Instead, LIN28a small molecule inhibitor attenuated the proreparative effects of LIN28a on the heart. Neonatal rat ventricular myocytes overexpressing LIN28a mechanistically showed increased glycolysis, ATP production, and levels of metabolic enzymes compared with control. LIN28a immunoprecipitation followed by RNA-immunoprecipitation sequencing in cardiomyocytes isolated from LIN28a-overexpressing hearts after injury identified long noncoding RNA-H19 as its most significantly altered target. Ablation of long noncoding RNA-H19 blunted LIN28a-induced enhancement on cardiomyocyte metabolism and cell cycle activity. CONCLUSIONS: Collectively, LIN28a reprograms cardiomyocyte metabolism and promotes persistence of mononuclear diploid cardiomyocytes in the injured heart, enhancing proreparative processes, thereby linking cardiomyocyte metabolism to regulation of ploidy/nucleation and repair in the heart.


Assuntos
Infarto do Miocárdio , RNA Longo não Codificante , Proteínas de Ligação a RNA , Animais , Camundongos , Ratos , Animais Recém-Nascidos , Ciclo Celular , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 323(4): H797-H817, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053749

RESUMO

Approximately 50% of all heart failure (HF) diagnoses can be classified as HF with preserved ejection fraction (HFpEF). HFpEF is more prevalent in females compared with males, but the underlying mechanisms are unknown. We previously showed that pressure overload (PO) in male felines induces a cardiopulmonary phenotype with essential features of human HFpEF. The goal of this study was to determine if slow progressive PO induces distinct cardiopulmonary phenotypes in females and males in the absence of other pathological stressors. Female and male felines underwent aortic constriction (banding) or sham surgery after baseline echocardiography, pulmonary function testing, and blood sampling. These assessments were repeated at 2 and 4 mo postsurgery to document the effects of slow progressive pressure overload. At 4 mo, invasive hemodynamic studies were also performed. Left ventricle (LV) tissue was collected for histology, myofibril mechanics, extracellular matrix (ECM) mass spectrometry, and single-nucleus RNA sequencing (snRNAseq). The induced pressure overload (PO) was not different between sexes. PO also induced comparable changes in LV wall thickness and myocyte cross-sectional area in both sexes. Both sexes had preserved ejection fraction, but males had a slightly more robust phenotype in hemodynamic and pulmonary parameters. There was no difference in LV fibrosis and ECM composition between banded male and female animals. LV snRNAseq revealed changes in gene programs of individual cell types unique to males and females after PO. Based on these results, both sexes develop cardiopulmonary dysfunction but the phenotype is somewhat less advanced in females.NEW & NOTEWORTHY We performed a comprehensive assessment to evaluate the effects of slow progressive pressure overload on cardiopulmonary function in a large animal model of heart failure with preserved ejection fraction (HFpEF) in males and females. Functional and structural assessments were performed at the organ, tissue, cellular, protein, and transcriptional levels. This is the first study to compare snRNAseq and ECM mass spectrometry of HFpEF myocardium from males and females. The results broaden our understanding of the pathophysiological response of both sexes to pressure overload. Both sexes developed a robust cardiopulmonary phenotype, but the phenotype was equal or a bit less robust in females.


Assuntos
Insuficiência Cardíaca , Animais , Gatos , Modelos Animais de Doenças , Feminino , Ventrículos do Coração , Humanos , Masculino , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
14.
Circulation ; 146(18): e246-e256, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134568

RESUMO

A task force composed of American Heart Association (AHA) Research Committee members established processes to measure the performance of the AHA's research portfolio and evaluated key outcomes that are fundamental to the overall success of the program. This report reviews progress that the AHA research program has had in achieving its goals relevant to the research programs in the AHA's research portfolio from 2008 to 2017. Comprehensive performance metrics were identified to assess the impact of AHA funding on researchers' career progress and research outcomes. Metrics included bibliometric analysis (ie, tracking of publications and their impact) and career development measures (ie, subsequent grant funding, intellectual property, faculty appointment/promotion, or industry position). Publication rates ranged from ≈0.5 to 4 publications per year, with a strong correlation between number of publications per year and later career stage. The Field-Weighted Citation Index, a metric of bibliometric impact, was between 1.5 and 3.0 for all programs, indicating that AHA awardee publications had a higher citation impact compared with similar publications. To gain insight into the career progression of AHA awardees, a 2-year postaward survey was distributed. Of the Postdoctoral Fellowship recipient respondents, 72% obtained academic research positions, with the remaining working in industry or government research settings; 72% of those in academic positions obtained additional funding. Among respondents who were Beginning Grant-in-Aid and Scientist Development Grant awardees, 45% received academic promotions and 83% obtained additional funding. Measuring performance of the AHA's research portfolio is critical to ensure that its strategic goals are met and to show the AHA's commitment to high-quality, impactful research.


Assuntos
Comitês Consultivos , American Heart Association , Estados Unidos , Humanos , Pesquisadores
15.
Pharmaceutics ; 14(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890404

RESUMO

We recently established a large animal model that recapitulates key clinical features of heart failure with preserved ejection fraction (HFpEF) and tested the effects of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). SAHA reversed and prevented the development of cardiopulmonary impairment. This study evaluated the effects of SAHA at the level of cardiomyocyte and contractile protein function to understand how it modulates cardiac function. Both isolated adult feline ventricular cardiomyocytes (AFVM) and left ventricle (LV) trabeculae isolated from non-failing donors were treated with SAHA or vehicle before recording functional data. Skinned myocytes were isolated from AFVM and human trabeculae to assess myofilament function. SAHA-treated AFVM had increased contractility and improved relaxation kinetics but no difference in peak calcium transients, with increased calcium sensitivity and decreased passive stiffness of myofilaments. Mass spectrometry analysis revealed increased acetylation of the myosin regulatory light chain with SAHA treatment. SAHA-treated human trabeculae had decreased diastolic tension and increased developed force. Myofilaments isolated from human trabeculae had increased calcium sensitivity and decreased passive stiffness. These findings suggest that SAHA has an important role in the direct control of cardiac function at the level of the cardiomyocyte and myofilament by increasing myofilament calcium sensitivity and reducing diastolic tension.

16.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35771638

RESUMO

Developmental cardiac tissue is regenerative while operating under low oxygen. After birth, ambient oxygen is associated with cardiomyocyte cell cycle exit and regeneration. Likewise, cardiac metabolism undergoes a shift with cardiac maturation. Whether there are common regulators of cardiomyocyte cell cycle linking metabolism to oxygen tension remains unknown. The objective of the study is to determine whether mitochondrial UCP2 is a metabolic oxygen sensor regulating cardiomyocyte cell cycle. Neonatal rat ventricular myocytes (NRVMs) under moderate hypoxia showed increased cell cycle activity and UCP2 expression. NRVMs exhibited a metabolic shift toward glycolysis, reducing citrate synthase, mtDNA, mitochondrial membrane potential (ΔΨm), and DNA damage/oxidative stress, while loss of UCP2 reversed this phenotype. Next, WT and mice from a global UCP2-KO mouse line (UCP2KO) kept under hypoxia for 4 weeks showed significant decline in cardiac function that was more pronounced in UCP2KO animals. Cardiomyocyte cell cycle activity was reduced, while fibrosis and DNA damage was significantly increased in UCP2KO animals compared with WT under hypoxia. Mechanistically, UCP2 increased acetyl-CoA levels and histone acetylation, and it altered chromatin modifiers linking metabolism to cardiomyocyte cell cycle under hypoxia. Here, we show a potentially novel role for mitochondrial UCP2 as an oxygen sensor regulating cardiomyocyte cell cycle activity, acetyl-CoA levels, and histone acetylation in response to moderate hypoxia.


Assuntos
Proteínas Mitocondriais , Miócitos Cardíacos , Acetilcoenzima A/metabolismo , Acetilação , Animais , Ciclo Celular , Histonas/metabolismo , Hipóxia/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Ratos , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
17.
Redox Biol ; 50: 102252, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121402

RESUMO

Tumor suppressor p53 plays a pivotal role in orchestrating mitochondrial remodeling by regulating their content, fusion/fission processes, and intracellular signaling molecules that are associated with mitophagy and apoptosis pathways. In order to determine a molecular mechanism underlying flow-mediated mitochondrial remodeling in endothelial cells, we examined, herein, the role of p53 on mitochondrial adaptations to physiological flow and its relevance to vascular function using endothelial cell-specific p53 deficient mice. We observed no changes in aerobic capacity, basal blood pressure, or endothelial mitochondrial phenotypes in the endothelial p53 mull animals. However, after 7 weeks of voluntary wheel running exercise, blood pressure reduction and endothelial mitochondrial remodeling (biogenesis, elongation, and mtDNA replication) were substantially blunted in endothelial p53 null animals compared to the wild-type, subjected to angiotensin II-induced hypertension. In addition, endothelial mtDNA lesions were significantly reduced following voluntary running exercise in wild-type mice, but not in the endothelial p53 null mice. Moreover, in vitro studies demonstrated that unidirectional laminar flow exposure significantly increased key putative regulators for mitochondrial remodeling and reduced mitochondrial reactive oxygen species generation and mtDNA damage in a p53-dependent manner. Mechanistically, unidirectional laminar flow instigated translocalization of p53 into the mitochondrial matrix where it binds to mitochondrial transcription factor A, TFAM, resulting in improving mtDNA integrity. Taken together, our findings suggest that p53 plays an integral role in mitochondrial remodeling under physiological flow condition and the flow-induced p53-TFAM axis may be a novel molecular intersection for enhancing mitochondrial homeostasis in endothelial cells.


Assuntos
DNA Mitocondrial , Proteína Supressora de Tumor p53 , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células Endoteliais/metabolismo , Camundongos , Atividade Motora , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Cardiovasc Res ; 118(1): 169-183, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33560342

RESUMO

AIMS: Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS: Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS: Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.


Assuntos
Quimiotaxia de Leucócito , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/enzimologia , Leucócitos/metabolismo , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Função Ventricular Esquerda , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Quinase 5 de Receptor Acoplado a Proteína G/genética , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Transdução de Sinais , Volume Sistólico , Transcriptoma , Pressão Ventricular
19.
Am J Physiol Heart Circ Physiol ; 321(6): H1014-H1029, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623184

RESUMO

Heart failure is the one of the leading causes of death in the United States. Heart failure is a complex syndrome caused by numerous diseases, including severe myocardial infarction (MI). MI occurs after an occlusion of a cardiac artery causing downstream ischemia. MI is followed by cardiac remodeling involving extensive remodeling and fibrosis, which, if the original insult is severe or prolonged, can ultimately progress into heart failure. There is no "cure" for heart failure because therapies to regenerate dead tissue are not yet available. Previous studies have shown that in both post-MI and post-ischemia-reperfusion (I/R) models of heart failure, administration of cortical bone stem cell (CBSC) treatment leads to a reduction in scar size and improved cardiac function. Our first study investigated the ability of mouse CBSC-derived exosomes (mCBSC-dEXO) to recapitulate mouse CBSCs (mCBSC) therapeutic effects in a 24-h post-I/R model. This study showed that injection of mCBSCs and mCBSC-dEXOs into the ischemic region of an infarct had a protective effect against I/R injury. mCBSC-dEXOs recapitulated the effects of CBSC treatment post-I/R, indicating exosomes are partly responsible for CBSC's beneficial effects. To examine if exosomes decrease fibrotic activation, adult rat ventricular fibroblasts (ARVFs) and adult human cardiac fibroblasts (NHCFs) were treated with transforming growth factor ß (TGFß) to activate fibrotic signaling before treatment with mCBSC- and human CBSC (hCBSC)-dEXOs. hCBSC-dEXOs caused a 100-fold decrease in human fibroblast activation. To further understand the signaling mechanisms regulating the protective decrease in fibrosis, we performed RNA sequencing on the NHCFs after hCBSC-dEXO treatment. The group treated with both TGFß and exosomes showed a decrease in small nucleolar RNA (snoRNA), known to be involved with ribosome stability.NEW & NOTEWORTHY Our work is noteworthy due to the identification of factors within stem cell-derived exosomes (dEXOs) that alter fibroblast activation through the hereto-unknown mechanism of decreasing small nucleolar RNA (snoRNA) signaling within cardiac fibroblasts. The study also shows that the injection of stem cells or a stem-cell-derived exosome therapy at the onset of reperfusion elicits cardioprotection, emphasizing the importance of early treatment in the post-ischemia-reperfusion (I/R) wounded heart.


Assuntos
Osso Cortical/citologia , Exossomos/transplante , Fibroblastos/patologia , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/cirurgia , Miocárdio/patologia , Transplante de Células-Tronco , Remodelação Ventricular , Animais , Células Cultivadas , Modelos Animais de Doenças , Exossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
20.
JACC Basic Transl Sci ; 6(8): 650-672, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466752

RESUMO

In this study the authors used systems biology to define progressive changes in metabolism and transcription in a large animal model of heart failure with preserved ejection fraction (HFpEF). Transcriptomic analysis of cardiac tissue, 1-month post-banding, revealed loss of electron transport chain components, and this was supported by changes in metabolism and mitochondrial function, altogether signifying alterations in oxidative metabolism. Established HFpEF, 4 months post-banding, resulted in changes in intermediary metabolism with normalized mitochondrial function. Mitochondrial dysfunction and energetic deficiencies were noted in skeletal muscle at early and late phases of disease, suggesting cardiac-derived signaling contributes to peripheral tissue maladaptation in HFpEF. Collectively, these results provide insights into the cellular biology underlying HFpEF progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...