Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1022, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200106

RESUMO

Periodontitis gradually damages the hard and soft tissues surrounding the tooth, leading to tooth loss. In recent years, the use of biomaterials in periodontitis treatment has expanded, including gels, nanoparticles, microparticles, fibers, and membranes. Among these, membranes have more clinical applications. Due to the ability of the piezoelectric material to regenerate damaged tissues, the aim of this study was to create piezoelectric composite membranes. To achieve this, Barium titanate powder (BaTiO3 powder)-a piezoelectric substance-was synthesized using the hydrothermal method and analyzed with X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM). Four types of membranes were fabricated using solvent casting method: three composite membranes with chitosan matrix and BaTiO3 fillers (at 3%, 6%, and 9% weight), and one chitosan membrane without BaTiO3. The microstructure of the membrane surfaces, agglomeration of BaTiO3 in membranes, and hydrophilicity, antibacterial, and electrical properties of the membrane were also investigated. The results indicated that membranes containing 3 and 6% BaTiO3 had suitable surface structure for the periodontitis treatment. Agglomeration of BaTiO3 particles was higher in the membrane containing 9% BaTiO3. The large amount of BaTiO3 improved the antibacterial properties of the membranes. Additionally, the membranes containing BaTiO3 had high electrical properties, especially those with 3% and 6% BaTiO3. Therefore, composite membranes containing BaTiO3, especially membranes containing 6% BaTiO3, are more favorable options than those without BaTiO3 for periodontitis treatment.


Assuntos
Quitosana , Periodontite , Humanos , Pós , Periodontite/terapia , Materiais Biocompatíveis , Antibacterianos/uso terapêutico
2.
J Biomed Mater Res B Appl Biomater ; 101(6): 911-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23401393

RESUMO

In this research, we studied improvement of mechanical properties of dimethacrylate-silica based dental composites by addition of Fuller's Earth (FE) clay. Three composites were made as base compounds consisting of 68, 58, and 48 wt % resin and 31, 41, and 51 wt % silica, respectively. Afterward, the composites were modified by adding FE. Mechanical properties including flexural strength, flexural modulus, work-of-fracture, fracture toughness, and microhardness were measured. Clay particles and fracture surface of composites consisting of 51 wt % silica (with and without FE) were examined by SEM. Measured results showed that flexural strength, work-of-fracture, flexural modulus, and microhardness of all composites increased by including FE nanofibers. Fracture toughness except for composite including 51 wt % silica had similar variations. It seems that locating FE nanofibers in weak resin region among silica particles leads to strengthening mechanisms, such as bridging and crack deflection, which cause improvement in mechanical properties.


Assuntos
Compostos de Alumínio/química , Materiais Dentários/química , Compostos de Magnésio/química , Nanofibras/química , Silicatos/química , Fenômenos Biomecânicos , Resinas Compostas/química , Restauração Dentária Permanente , Análise do Estresse Dentário , Humanos , Teste de Materiais , Metacrilatos/química , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Dióxido de Silício/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...