Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 11(6): 2480-2496, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911846

RESUMO

Temporal dynamics of confined optical fields can provide valuable insights into light-matter interactions in complex optical systems, going beyond their frequency-domain description. Here, we present a new experimental approach based on interferometric autocorrelation (IAC) that reveals the dynamics of optical near-fields enhanced by collective resonances in periodic metasurfaces. We focus on probing the resonances known as waveguide-plasmon polaritons, which are supported by plasmonic nanoparticle arrays coupled to a slab waveguide. To probe the resonant near-field enhancement, our IAC measurements make use of enhanced two-photon excited luminescence (TPEL) from semiconductor quantum dots deposited on the nanoparticle arrays. Thanks to the incoherent character of TPEL, the measurements are only sensitive to the fundamental optical fields and therefore can reveal clear signatures of their coherent temporal dynamics. In particular, we show that the excitation of a high-Q collective resonance gives rise to interference fringes at time delays as large as 500 fs, much greater than the incident pulse duration (150 fs). Based on these signatures, the basic characteristics of the resonances can be determined, including their Q factors, which are found to exceed 200. Furthermore, the measurements also reveal temporal beating between two different resonances, providing information on their frequencies and their relative contribution to the field enhancement. Finally, we present an approach to enhance the visibility of the resonances hidden in the IAC curves by converting them into spectrograms, which greatly facilitates the analysis and interpretation of the results. Our findings open up new perspectives on time-resolved studies of collective resonances in metasurfaces and other multiresonant systems.

2.
ACS Nano ; 18(22): 14685-14695, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38773944

RESUMO

Indium phosphide (InP) quantum dots (QDs) are considered the most promising alternative for Cd and Pb-based QDs for lighting and display applications. However, while core-only QDs of CdSe and CdTe have been prepared with near-unity photoluminescence quantum yield (PLQY), this is not yet achieved for InP QDs. Treatments with HF have been used to boost the PLQY of InP core-only QDs up to 85%. However, HF etches the QDs, causing loss of material and broadening of the optical features. Here, we present a simple postsynthesis HF-free treatment that is based on passivating the surface of the InP QDs with InF3. For optimized conditions, this results in a PLQY as high as 93% and nearly monoexponential photoluminescence decay. Etching of the particle surface is entirely avoided if the treatment is performed under stringent acid-free conditions. We show that this treatment is applicable to InP QDs with various sizes and InP QDs obtained via different synthesis routes. The optical properties of the resulting core-only InP QDs are on par with InP/ZnSe/ZnS core-shell QDs, with significantly higher absorption coefficients in the blue, and with potential for faster charge transport. These are important advantages when considering InP QDs for use in micro-LEDs or photodetectors.

3.
J Am Chem Soc ; 146(14): 9928-9938, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530865

RESUMO

The optoelectronic properties of colloidal quantum dots (cQDs) depend critically on the absolute energy of the conduction and valence band edges. It is well known these band-edge energies are sensitive to the ligands on the cQD surface, but it is much less clear how they depend on other experimental conditions, like solvation. Here, we experimentally determine the band-edge positions of thin films of PbS and ZnO cQDs via spectroelectrochemical measurements. To achieve this, we first carefully evaluate and optimize the electrochemical injection of electrons and holes into PbS cQDs. This results in electrochemically fully reversible electron injection with >8 electrons per PbS cQDs, allowing the quantitative determination of the conduction band energy for PbS cQDs with various diameters and surface compositions. Surprisingly, we find that the band-edge energies shift by nearly 1 eV in the presence of different solvents, a result that also holds true for ZnO cQDs. We argue that complexation and partial charge transfer between solvent and surface ions are responsible for this large effect of the solvent on the band-edge energy. The trend in the energy shift matches the results of density functional theory (DFT) calculations in explicit solvents and scales with the energy of complexation between surface cations and solvents. As a first approximation, the solvent Lewis basicity can be used as a good descriptor to predict the shift of the conduction and valence band edges of solvated cQDs.

4.
Nano Lett ; 23(18): 8697-8703, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37672486

RESUMO

Indium phosphide colloidal quantum dots (CQDs) are the main alternative for toxic and restricted Cd based CQDs for lighting and display applications. Here we systematically report on the size-dependent optical absorption, ensemble, and single particle photoluminescence (PL) and biexciton lifetimes of core-only InP CQDs. This systematic study is enabled by improvements in the synthesis of InP CQDs to yield a broad size series of monodisperse core-only InP CQDs with narrow absorption and PL line width and significant PL quantum yield.

5.
ACS Nano ; 17(18): 18576-18583, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37712414

RESUMO

Quantum dots (QDs) are known for their size-dependent optical properties, narrow emission bands, and high photoluminescence quantum yield (PLQY), which make them interesting candidates for optoelectronic applications. In particular, InP QDs are receiving a lot of attention since they are less toxic than other QD materials and are hence suitable for consumer applications. Most of these applications, such as LEDs, photovoltaics, and lasing, involve charging QDs with electrons and/or holes. However, charging of QDs is not easy nor innocent, and the effect of charging on the composition and properties of InP QDs is not yet well understood. This work provides theoretical insight into electron charging of the InP core and InP/ZnSe QDs. Density functional theory calculations are used to show that charging of InP-based QDs with electrons leads to the formation of trap states if the QD contains In atoms that are undercoordinated and thus have less than four bonds to neighboring atoms. InP core-only QDs have such atoms at the surface, which are responsible for the formation of trap states upon charging with electrons. We show that InP/ZnSe core-shell models with all In atoms fully coordinated can be charged with electrons without the formation of trap states. These results show that undercoordinated In atoms should be avoided at all times for QDs to be stably charged with electrons.

6.
J Phys Chem C Nanomater Interfaces ; 127(31): 15406-15415, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583440

RESUMO

Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical characterizations and transient absorption spectroscopy, we have investigated the mechanism of interfacial charge transfer (CT) between colloidal CsPbBr3 nanoplatelets (NPLs) and surface-anchored perylene derivatives and have explored the possibility of controlling the CT rate by tuning the driving force. The CT driving force was tuned systematically by attaching acceptors with different electron affinities and by varying the bandgap of NPLs via thickness-controlled quantum confinement. Our data show that the charge-separated state is formed by selectively exciting either the electron donors or acceptors in the same system. Upon exciting attached acceptors, hole transfer from perylene derivatives to CsPbBr3 NPLs takes place on a picosecond time scale, showing an energetic behavior in line with the Marcus normal regime. Interestingly, such energetic behavior is absent upon exciting the electron donor, suggesting that the dominant CT mechanism is energy transfer followed by ultrafast hole transfer. Our findings not only elucidate the photophysics of perovskite-molecule systems but also provide guidelines for tailoring such hybrid systems for specific applications.

7.
Chem Mater ; 35(14): 5311-5321, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37528840

RESUMO

Lanthanide-doped LiYF4 (Ln:YLF) is commonly used for a broad variety of optical applications, such as lasing, photon upconversion and optical refrigeration. When synthesized as nanocrystals (NCs), this material is also of interest for biological applications and fundamental physical studies. Until now, it was unclear how Ln:YLF NCs grow from their ionic precursors into tetragonal NCs with a well-defined, bipyramidal shape and uniform dopant distribution. Here, we study the nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF), as a template for general Ln:YLF NC syntheses. We show that the formation of bipyramidal Yb:YLF NCs is a multistep process starting with the formation of amorphous Yb:YLF spheres. Over time, these spheres grow via Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLF NCs. We further show that prolonged heating of the NCs results in the degradation of the NCs, observed by the presence of large LiF cubes and small, irregular Yb:YLF NCs. Due to the similarity in chemical nature of all lanthanide ions our work sheds light on the formation stages of Ln:YLF NCs in general.

8.
J Phys Chem C Nanomater Interfaces ; 127(20): 9896-9902, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37255927

RESUMO

Electrochemical charging of nanocrystal films opens up new possibilities for designing quantum dot-based device structures, but a solid theoretical framework of this process and its limitations is lacking. In this work, drift-diffusion simulations are employed to model the charging of nanocrystal films and gain insight into the electrochemical doping process. Through steady state simulations it is shown that the Fermi level and doping density in the nanocrystal film depend on the concentration of the electrolyte in addition to the value of the applied potential. Time-resolved simulations reveal that charging is often limited by transport of electrolyte ions. However, ion transport in the film is dominated by drift, rather than diffusion, and the concentration profile of ions differs substantially from concentration profiles of diffusing redox species at flat electrodes. Classical electrochemical theory cannot be used to model this type of mass transport limited behavior in films of nanocrystals, so a new model is developed. We show that the Randles-Sevcík equation, which is derived for electrochemical species diffusing in solution, but is often applied to films as well, results in a significant underestimation of the diffusion coefficients of the charge compensating electrolyte ions.

9.
Adv Mater ; 35(29): e2211198, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060330

RESUMO

Synergically combining their respective ultrahigh charge mobility and strong light absorption, graphene (Gr)/semiconductor heterostructures are promising building blocks for efficient optoelectronics, particularly photodetectors. Charge transfer (CT) across the heterostructure interface crucially determines device efficiency and functionality. Here, it is reported that hole-transfer processes dominate the ultrafast CT across strongly coupled double-perovskite Cs2 AgBiBr6 /graphene (DP/Gr) heterostructures following optical excitation. While holes are the primary charges flowing across interfaces, their transfer direction, as well as efficiency, show a remarkable dependence on the excitation wavelength. For excitation with photon energies below the bandgap of DPs, the photoexcited hot holes in Gr can compete with the thermalization process and inject into in-gap defect states in DPs. In contrast, above-bandgap excitation of DP reverses the hole-transfer direction, leading to hole transfer from the valence band of DPs to Gr. Experimental evidence that increasing the excitation photon energy enhances CT efficiency for both below- and above-bandgap photoexcitation regimes is further provided, unveiling the positive role of excess energy in enhancing interfacial CT. The possibility of switching the hole-transfer direction and thus the interfacial photogating field by tuning the excitation wavelength, provides a novel way to control the interfacial charge flow across a DP/Gr heterojunction.

10.
ACS Appl Mater Interfaces ; 15(2): 3274-3286, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608312

RESUMO

Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of ∼60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Förster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.

11.
ACS Nano ; 16(12): 21216-21224, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36516407

RESUMO

We present a strategy to actively engineer long-range charge transport in colloidal quantum dot assemblies by using ligand functionalities that introduce electronic states and provide a path for carrier transfer. This is a shift away from the use of inactive spacers to modulate charge transport through the lowering of the tunneling barrier for interparticle carrier transfer. This is accomplished with the use of electronically coupled redox ligands by which a self-exchange chain reaction takes place and long-range charge transport is enabled across the film. We identified the different modes of charge transport in these quantum dot/redox ligand assemblies, their energetic position and kinetics, and explain how to rationally manipulate them through modulation of the Fermi level and redox ligand coverage.

12.
Chem Mater ; 34(22): 10093-10103, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439318

RESUMO

Indium phosphide quantum dots are the main alternative for toxic and restricted Cd-based quantum dots for lighting and display applications, but in the absence of protecting ZnSe and/or ZnS shells, InP quantum dots suffer from low photoluminescence quantum yields. Traditionally, HF treatments have been used to improve the quantum yield of InP to ∼50%, but these treatments are dangerous and not well understood. Here, we develop a postsynthetic treatment that forms HF in situ from benzoyl fluoride, which can be used to strongly increase the quantum yield of InP core-only quantum dots. This treatment is water-free and can be performed safely. Simultaneous addition of the z-type ligand ZnCl2 increases the photoluminescence quantum yield up to 85%. Structural analysis via XPS as well as solid state and solution NMR measurements shows that the in situ generated HF leads to a surface passivation by indium fluoride z-type ligands and removes polyphosphates, but not PO3 and PO4 species from the InP surface. With DFT calculations it is shown that InP QDs can be trap-free even when PO3 and PO4 species are present on the surface. These results show that both polyphosphate removal and z-type passivation are necessary to obtain high quantum yields in InP core-only quantum dots. They further show that core-only InP QDs can achieve photoluminescence quantum yields rivalling those of InP/ZnSe/ZnS core/shell/shell QDs and the best core-only II-VI QDs.

13.
ACS Nano ; 16(11): 18777-18788, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36256901

RESUMO

Colloidal nanoplatelets (NPLs) are promising materials for lasing applications. The properties are usually discussed in the framework of 2D materials, where strong excitonic effects dominate the optical properties near the band edge. At the same time, NPLs have finite lateral dimensions such that NPLs are not true extended 2D structures. Here we study the photophysics and gain properties of CdSe/CdS/ZnS core-shell-shell NPLs upon electrochemical n doping and optical excitation. Steady-state absorption and PL spectroscopy show that excitonic effects are weaker in core-shell-shell nanoplatelets due to the decreased exciton binding energy. Transient absorption studies reveal a gain threshold of only one excitation per nanoplatelet. Using electrochemical n doping, we observe the complete bleaching of the band edge exciton transitions. Combining electrochemical doping with transient absorption spectroscopy, we demonstrate that the gain threshold is fully removed over a broad spectral range and gain coefficients of several thousand cm-1 are obtained. These doped NPLs are the best performing colloidal nanomaterial gain medium reported to date, with the lowest gain threshold and broadest gain spectrum and gain coefficients that are 4 times higher than in n-doped colloidal quantum dots. The low exciton binding energy due to the CdS and ZnS shells, in combination with the relatively small lateral size of the NPLs, results in excited states that are effectively delocalized over the entire platelet. Core-shell NPLs are thus on the border between strong confinement in QDs and dominant Coulombic effects in 2D materials. We demonstrate that this limit is in effect ideal for optical gain and that it results in an optimal lateral size of the platelets where the gain threshold per nm2 is minimal.

14.
J Am Chem Soc ; 144(25): 11059-11063, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765828

RESUMO

One of the most promising properties of lead halide perovskite nanocrystals (NCs) is their defect tolerance. It is often argued that, due to the electronic structure of the conduction and valence bands, undercoordinated ions can only form localized levels inside or close to the band edges (i.e., shallow traps). However, multiple studies have shown that dangling bonds on surface Br- can still create deep trap states. Here, we argue that the traditional picture of defect tolerance is incomplete and that deep Br- traps can be explained by considering the local environment of the trap states. Using density functional theory calculations, we show that surface Br- sites experience a destabilizing local electrostatic potential that pushes their dangling orbitals into the bandgap. These deep trap states can be electrostatically passivated through the addition of ions that stabilize the dangling orbitals via ionic interactions without covalently binding to the NC surface. These results shed light on the formation of deep traps in perovskite NCs and provide strategies to remove them from the bandgap.

15.
Chem Mater ; 34(9): 4019-4028, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35573106

RESUMO

Quantum dots (QDs) are considered for devices like light-emitting diodes (LEDs) and photodetectors as a result of their tunable optoelectronic properties. To utilize the full potential of QDs for optoelectronic applications, control over the charge carrier density is vital. However, controlled electronic doping of these materials has remained a long-standing challenge, thus slowing their integration into optoelectronic devices. Electrochemical doping offers a way to precisely and controllably tune the charge carrier concentration as a function of applied potential and thus the doping levels in QDs. However, the injected charges are typically not stable after disconnecting the external voltage source because of electrochemical side reactions with impurities or with the surfaces of the QDs. Here, we use photopolymerization to covalently bind polymerizable electrolyte ions to polymerizable solvent molecules after electrochemical charge injection. We discuss the importance of using polymerizable dopant ions as compared to nonpolymerizable conventional electrolyte ions such as LiClO4 when used in electrochemical doping. The results show that the stability of charge carriers in QD films can be enhanced by many orders of magnitude, from minutes to several weeks, after photochemical ion fixation. We anticipate that this novel way of stable doping of QDs will pave the way for new opportunities and potential uses in future QD electronic devices.

16.
Nano Lett ; 21(22): 9426-9432, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34780185

RESUMO

Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of low-dimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension.

17.
J Phys Chem C Nanomater Interfaces ; 125(43): 23968-23975, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34765075

RESUMO

Many colloidal quantum dot (QD)-based devices involve charging of the QD, either via intentional electronic doping or via electrical charge injection or photoexcitation. Previous research has shown that this charging can give rise to undesirable electrochemical surface reactions, leading to the formation of localized in-gap states. However, little is known about the factors that influence the stability of charged QDs against surface oxidation or reduction. Here, we use density functional theory to investigate the effect of various ligands and solvents on the reduction of surface Cd in negatively charged CdSe QDs. We find that X-type ligands can lead to significant shifts in the energy of the band edges but that the in-gap state related to reduced surface Cd is shifted in the same direction. As a result, shifting the band edges to higher energies does not necessarily lead to less stable electron charging. However, subtle changes in the local electrostatic environment lead to a clear correlation between the position of the in-gap state in the bandgap and the energy gained upon surface reduction. Binding ligands directly to the Cd sites most prone to reduction was found to greatly enhance the stability of the electron charged QDs. We find that ligands bind much more weakly after reduction of the Cd site, leading to a loss in binding energy that makes charge localization no longer energetically favorable. Lastly, we show that increasing the polarity of the solvent also increases the stability of QDs charged with electrons. These results highlight the complexity of surface reduction reactions in QDs and provide valuable strategies for improving the stability of charged QDs.

18.
ACS Energy Lett ; 6(7): 2519-2525, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34307881

RESUMO

Lead halide perovskite nanocrystals have drawn attention as active light-absorbing or -emitting materials for opto-electronic applications due to their facile synthesis, intrinsic defect tolerance, and color-pure emission ranging over the entire visible spectrum. To optimize their application in, e.g., solar cells and light-emitting diodes, it is desirable to gain control over electronic doping of these materials. However, predominantly due to the intrinsic instability of perovskites, successful electronic doping has remained elusive. Using spectro-electrochemistry and electrochemical transistor measurements, we demonstrate here that CsPbBr3 nanocrystals can be successfully and reversibly p-doped via electrochemical hole injection. From an applied potential of ∼0.9 V vs NHE, the emission quenches, the band edge absorbance bleaches, and the electronic conductivity quickly increases, demonstrating the successful injection of holes into the valence band of the CsPbBr3 nanocrystals.

19.
Nano Lett ; 21(13): 5760-5766, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34133188

RESUMO

Broadening of multiexciton emission from colloidal quantum dots (QDs) at room temperature is important for their use in high-power applications, but an in-depth characterization has not been possible until now. We present and apply a novel spectroscopic method to quantify the biexciton line width and biexciton binding energy of single CdSe/CdS/ZnS colloidal QDs at room temperature. In our method, which we term "cascade spectroscopy", we select emission events from the biexciton cascade and reconstruct their spectrum. The biexciton has an average emission line width of 86 meV on the single-QD scale, similar to that of the exciton. Variations in the biexciton repulsion (Eb = 4.0 ± 3.1 meV; mean ± standard deviation of 15 QDs) are correlated with but are more narrowly distributed than variations in the exciton energy (10.0 meV standard deviation). Using a simple quantum-mechanical model, we conclude that inhomogeneous broadening in our sample is primarily due to variations in the CdS shell thickness.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Análise Espectral , Temperatura
20.
ACS Photonics ; 8(4): 1143-1151, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34056035

RESUMO

Accurately controlling light emission using nano- and microstructured lenses and antennas is an active field of research. Dielectrics are especially attractive lens materials due to their low optical losses over a broad bandwidth. In this work we measure highly directional light emission from patterned quantum dots (QDs) aligned underneath all-dielectric nanostructured microlenses. The lenses are designed with an evolutionary algorithm and have a theoretical directivity of 160. The fabricated structures demonstrate an experimental full directivity of 61 ± 3, three times higher than what has been estimated before, with a beaming half-angle of 2.6°. This high value compared to previous works is achieved via three mechanisms. First, direct electron beam patterning of QD emitters and alignment markers allowed for more localized emission and better emitter-lens alignment. Second, the lens fabrication was refined to minimize distortions between the designed shape and the final structure. Finally, a new measurement technique was developed that combines integrating sphere microscopy with Fourier microscopy. This enables complete directivity measurements, contrary to other reported values, which are typically only partial directivities or estimates of the full directivity that rely partly on simulations. The experimentally measured values of the complete directivity were higher than predicted by combining simulations with partial directivity measurements. High directivity was obtained from three different materials (cadmium-selenide-based QDs and two lead halide perovskite materials), emitting at 520, 620, and 700 nm, by scaling the lens size according to the emission wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...