Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 151(17): 174305, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703511

RESUMO

We report benchmark results for dissociative photoionization (DPI) spectroscopy and dynamics of the NO molecule in the region of the σ* shape resonance in the ionization leading to the NO+(c3Π) ionic state. The experimental study combines well characterized extreme ultraviolet (XUV) circularly polarized synchrotron radiation, delivered at the DESIRS beamline (SOLEIL), with ion-electron coincidence 3D momentum spectroscopy. The measured (N+, e) kinetic energy correlation diagrams reported at four discrete photon energies in the extended 23-33 eV energy range allow for resolving the different active DPI reactions and underline the importance of spectrally resolved studies using synchrotron radiation in the context of time-resolved studies where photoionization is induced by broadband XUV attosecond pulses. In the dominant DPI reaction which leads to the NO+(c3Π) ionic state, photoionization dynamics across the σ* shape resonance are probed by molecular frame photoelectron angular distributions where the parallel and perpendicular transitions are highlighted, as well as the circular dichroism CDAD(θe) in the molecular frame. The latter also constitute benchmark references for molecular polarimetry. The measured dynamical parameters are well described by multichannel Schwinger configuration interaction calculations. Similar results are obtained for the DPI spectroscopy of highly excited NO+ electronic states populated in the explored XUV photon energy range.

2.
Faraday Discuss ; 194: 161-183, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27853775

RESUMO

Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s1, s2, s3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s1, s2, s3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...