Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38904778

RESUMO

INTRODUCTION: Prosthetic valve endocarditis (PVE) is a serious complication of prosthetic valve implantation, with an estimated yearly incidence of at least 0.4-1.0%. The Duke criteria and subsequent modifications have been developed as a diagnostic framework for infective endocarditis (IE) in clinical studies. However, their sensitivity and specificity are limited, especially for PVE. Furthermore, their most recent versions (ESC2015 and ESC2023) include advanced imaging modalities, e.g., cardiac CTA and [18F]FDG PET/CT as major criteria. However, despite these significant changes, the weighing system using major and minor criteria has remained unchanged. This may have introduced bias to the diagnostic set of criteria. Here, we aimed to evaluate and improve the predictive value of the modified Duke/ESC 2015 (MDE2015) criteria by using machine learning algorithms. METHODS: In this proof-of-concept study, we used data of a well-defined retrospective multicentre cohort of 160 patients evaluated for suspected PVE. Four machine learning algorithms were compared to the prediction of the diagnosis according to the MDE2015 criteria: Lasso logistic regression, decision tree with gradient boosting (XGBoost), decision tree without gradient boosting, and a model combining predictions of these (ensemble learning). All models used the same features that also constitute the MDE2015 criteria. The final diagnosis of PVE, based on endocarditis team consensus using all available clinical information, including surgical findings whenever performed, and with at least 1 year follow up, was used as the composite gold standard. RESULTS: The diagnostic performance of the MDE2015 criteria varied depending on how the category of 'possible' PVE cases were handled. Considering these cases as positive for PVE, sensitivity and specificity were 0.96 and 0.60, respectively. Whereas treating these cases as negative, sensitivity and specificity were 0.74 and 0.98, respectively. Combining the approaches of considering possible endocarditis as positive and as negative for ROC-analysis resulted in an excellent AUC of 0.917. For the machine learning models, the sensitivity and specificity were as follows: logistic regression, 0.92 and 0.85; XGBoost, 0.90 and 0.85; decision trees, 0.88 and 0.86; and ensemble learning, 0.91 and 0.85, respectively. The resulting AUCs were, in the same order: 0.938, 0.937, 0.930, and 0.941, respectively. DISCUSSION: In this proof-of-concept study, machine learning algorithms achieved improved diagnostic performance compared to the major/minor weighing system as used in the MDE2015 criteria. Moreover, these models provide quantifiable certainty levels of the diagnosis, potentially enhancing interpretability for clinicians. Additionally, they allow for easy incorporation of new and/or refined criteria, such as the individual weight of advanced imaging modalities such as CTA or [18F]FDG PET/CT. These promising preliminary findings warrant further studies for validation, ideally in a prospective cohort encompassing the full spectrum of patients with suspected IE.

2.
Diagnostics (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37835891

RESUMO

Infective endocarditis (IE) is a serious and diagnostically challenging condition. [18F]FDG PET/CT is valuable for evaluating suspected IE, but it is susceptible to motion-related artefacts. This study investigated the potential benefits of cardiac motion correction for [18F]FDG PET/CT. In this prospective study, patients underwent [18F]FDG PET/CT for suspected IE, combined with a conventional cardiac gating sequence, a data-driven cardiac and respiratory gating sequence (CardioFreezeTM), or both. Scans were performed in adherence to EANM guidelines and assessors were blinded to patients' clinical contexts. Final diagnosis of IE was established based on multidisciplinary consensus after a minimum of 4 months follow-up and surgical findings, whenever performed. Seven patients participated in the study, undergoing both an ungated [18F] FDG-PET/CT and a scan with either conventional cardiac gating, CardioFreezeTM, or both. Cardiac motion correction improved the interpretability of [18F]FDG PET/CT in four out of five patients with valvular IE lesions, regardless of the method of motion correction used, which was statistically significant by Wilcoxon's signed rank test: p = 0.046. In one patient the motion-corrected sequence confirmed the diagnosis of endocarditis, which had been missed on non-gated PET. The performance of the two gating sequences was comparable. In conclusion, in this exploratory study, cardiac motion correction of [18F]FDG PET/CT improved the interpretability of [18F]FDG PET/CT. This may improve the sensitivity of PET/CT for suspected IE. Further larger comparative studies are necessary to confirm the additive value of these cardiac motion correction methods.

3.
Curr Cardiol Rep ; 23(9): 130, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34363148

RESUMO

PURPOSE OF REVIEW: Additional imaging modalities, such as FDG-PET/CT, have been included into the workup for patients with suspected infective endocarditis, according to major international guidelines published in 2015. The purpose of this review is to give an overview of FDG-PET/CT indications and standardized approaches in the setting of suspected infective endocarditis. RECENT FINDINGS: There are two main indications for performing FDG-PET/CT in patients with suspected infective endocarditis: (i) detecting intracardiac infections and (ii) detection of (clinically silent) disseminated infectious disease. The diagnostic performance of FDG-PET/CT for intracardiac lesions depends on the presence of native valves, prosthetic valves, or implanted cardiac devices, with a sensitivity that is poor for native valve endocarditis and cardiac device-related lead infections, but much better for prosthetic valve endocarditis and cardiac device-related pocket infections. Specificity is high for all these indications. The detection of disseminated disease may also help establish the diagnosis and/or impact patient management. Based on current evidence, FDG-PET/CT should be considered for detection of disseminated disease in suspected endocarditis. Absence of intracardiac lesions on FDG-PET/CT cannot rule out native valve endocarditis, but positive findings strongly support the diagnosis. For prosthetic valve endocarditis, standard use of FDG-PET/CT is recommended because of its high sensitivity and specificity. For implanted cardiac devices, FDG-PET/CT is also recommended, but should be evaluated with careful attention to clinical context, because its sensitivity is high for pocket infections, but low for lead infections. In patients with prosthetic valves with or without additional aortic prosthesis, combination with CTA should be considered. Optimal timing of FDG-PET/CT is important, both during clinical workup and technically (i.e., post tracer injection). In addition, procedural standardization is key and encompasses patient preparation, scan acquisition, reconstruction, subsequent analysis, and clinical interpretation. The recommendations discussed here will hopefully contribute to improved standardization and enhanced performance of FDG-PET/CT in the clinical management of patients with suspected infective endocarditis.


Assuntos
Endocardite Bacteriana , Endocardite , Próteses Valvulares Cardíacas , Infecções Relacionadas à Prótese , Endocardite/diagnóstico por imagem , Endocardite Bacteriana/diagnóstico por imagem , Fluordesoxiglucose F18 , Próteses Valvulares Cardíacas/efeitos adversos , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Infecções Relacionadas à Prótese/diagnóstico por imagem , Compostos Radiofarmacêuticos , Padrões de Referência
4.
Eur J Nucl Med Mol Imaging ; 48(1): 241-253, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594196

RESUMO

BACKGROUND: Left ventricular assist devices (LVADs) are increasingly used for the treatment of advanced heart failure. LVADs improve quality of life and decrease mortality, but the driveline carries substantial risk for major infections. These device-related LVAD and driveline infections are difficult to diagnose with conventional imaging. We reviewed and analysed the current literature on the additive value of 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) imaging for the diagnosis of LVAD-related infections." MATERIALS/METHODS: We performed a systematic literature review using several databases from their inception until the 31st of December, 2019. Studies investigating the diagnostic performance of FDG-PET/CT in patients with suspected LVAD infection were retrieved. After a bias risk assessment using QUADAS-2, a study-aggregate meta-analysis was performed on a per examination-based analysis. RESULTS: A total of 10 studies were included in the systematic review, eight of which were also eligible for study-aggregate meta-analysis. For the meta-analysis, a total of 256 FDG-PET/CT scans, examining pump/pocket and/or driveline infection, were acquired in 230 patients. Pooled sensitivity of FDG-PET/CT was 0.95 (95% confidence interval (CI) 0.89-0.97) and pooled specificity was 0.91 (95% CI 0.54-0.99) for the diagnosis of device-related infection. For pump/pocket infection, sensitivity and specificity of FDG-PET/CT were 0.97 (95%CI 0.69-1.00) and 0.93 (95%CI 0.64-0.99), respectively. For driveline infection, sensitivity and specificity were 0.96 (95%CI 0.88-0.99) and 0.99 (95%CI 0.13-1.00) respectively. Significant heterogeneity existed across studies for specificity, mostly caused by differences in scan procedures. Predefined criteria for suspicion of LVAD and/or driveline infection were lacking in all included studies. CONCLUSIONS: FDG-PET/CT is a valuable tool for assessment of device-related infection in LVAD patients, with high sensitivity and high, albeit variable, specificity. Standardization of FDG-PET/CT procedures and criteria for suspected device-related LVAD infections are needed for consistent reporting of FDG-PET/CT scans.


Assuntos
Coração Auxiliar , Infecções Relacionadas à Prótese , Fluordesoxiglucose F18 , Coração Auxiliar/efeitos adversos , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Infecções Relacionadas à Prótese/diagnóstico por imagem , Qualidade de Vida , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade
5.
Eur Neuropsychopharmacol ; 36: 154-159, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32522387

RESUMO

A polymorphism in the gene encoding the serotonin (5-HT) transporter (5-HTT) has been shown to moderate the response to CO2 inhalation, an experimental model for panic attacks (PAs). Recurrent, unpredictable PAs represent, together with anticipatory anxiety of recurring attacks, the core feature of panic disorder (PD) and significantly interfere with patients' daily life. In addition to genetic components, accumulating evidence suggests that epigenetic mechanisms, which regulate gene expression by modifying chromatin structure, also play a fundamental role in the etiology of mental disorders. However, in PD, epigenetic mechanisms have barely been examined to date. In the present study, we investigated the relationship between methylation at the regulatory region of the gene encoding the 5-HTT and the reactivity to a 35% CO2 inhalation in PD patients. We focused on four specific CpG sites and found a significant association between the methylation level of one of these CpG sites and the fear response. This suggests that the emotional response to CO2 inhalation might be moderated by an epigenetic mechanism, and underlines the implication of the 5-HT system in PAs. Future studies are needed to further investigate epigenetic alterations in PD and their functional consequences. These insights can increase our understanding of the underlying pathophysiology and support the development of new treatment strategies.


Assuntos
Dióxido de Carbono/efeitos adversos , Metilação de DNA/fisiologia , Medo/fisiologia , Transtorno de Pânico/metabolismo , Sequências Reguladoras de Ácido Nucleico/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Sequência de Bases , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Medo/efeitos dos fármacos , Medo/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno de Pânico/genética , Transtorno de Pânico/psicologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
6.
PLoS One ; 15(5): e0233387, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437382

RESUMO

Real-time reverse transcription PCR (qPCR) normalized to an internal reference gene (RG), is a frequently used method for quantifying gene expression changes in neuroscience. Although RG expression is assumed to be constant independent of physiological or experimental conditions, several studies have shown that commonly used RGs are not expressed stably. The use of unstable RGs has a profound effect on the conclusions drawn from studies on gene expression, and almost universally results in spurious estimation of target gene expression. Approaches aimed at selecting and validating RGs often make use of different statistical methods, which may lead to conflicting results. Based on published RG validation studies involving hypoxia the present study evaluates the expression of 5 candidate RGs (Actb, Pgk1, Sdha, Gapdh, Rnu6b) as a function of hypoxia exposure and hypothermic treatment in the neonatal rat cerebral cortex-in order to identify RGs that are stably expressed under these experimental conditions-using several statistical approaches that have been proposed to validate RGs. In doing so, we first analyzed RG ranking stability proposed by several widely used statistical methods and related tools, i.e. the Coefficient of Variation (CV) analysis, GeNorm, NormFinder, BestKeeper, and the ΔCt method. Using the Geometric mean rank, Pgk1 was identified as the most stable gene. Subsequently, we compared RG expression patterns between the various experimental groups. We found that these statistical methods, next to producing different rankings per se, all ranked RGs displaying significant differences in expression levels between groups as the most stable RG. As a consequence, when assessing the impact of RG selection on target gene expression quantification, substantial differences in target gene expression profiles were observed. Altogether, by assessing mRNA expression profiles within the neonatal rat brain cortex in hypoxia and hypothermia as a showcase, this study underlines the importance of further validating RGs for each individual experimental paradigm, considering the limitations of the statistical methods used for this aim.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Genes Essenciais , Hipotermia/genética , Hipóxia Encefálica/genética , Animais , Animais Recém-Nascidos , Expressão Gênica , Hipotermia/metabolismo , Hipóxia Encefálica/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes
7.
Prog Neurobiol ; 168: 42-68, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29653249

RESUMO

Human pluripotent stem cell (PSC) technology and direct somatic cell reprogramming have opened up a promising new avenue in the field of neuroscience. These recent advances allow researchers to obtain virtually any cell type found in the human brain, making it possible to produce and study functional neurons in laboratory conditions for both scientific and medical purposes. Although distinct approaches have shown to be successful in directing neuronal cell fate in vitro, their refinement and optimization, as well as the search for alternative approaches, remains necessary to help realize the full potential of the eventually derived neuronal populations. Furthermore, we are currently limited in the number of neuronal subtypes whose induction is fully established, and different cultivation protocols for each subtype exist, making it challenging to increase the reproducibility and decrease the variances that are observed between different protocols. In this review, we summarize the progress that has been made in generating various neuronal subtypes from PSCs and somatic cells, with special emphasis on chemically defined systems, transcription factor-mediated reprogramming and epigenetic-based approaches. We also discuss the efforts that are being made to increase the efficiency of current protocols and address the potential for the use of these cells in disease modelling, drug discovery and regenerative medicine.


Assuntos
Reprogramação Celular/fisiologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplante , Animais , Diferenciação Celular/efeitos dos fármacos , Epigenômica/métodos , Técnicas In Vitro , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Behav Brain Res ; 353: 236-241, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481811

RESUMO

BACKGROUND: Behavioral testing provides an essential approach in further developing our understanding of brain structure and function. The aim of our study was to outline a more expanded approach to cognition- and anxiety-related behavior in the rabbit. METHODS: Twenty-one 70-day old rabbits (13 female, 8 male) were exposed to open field test, dark-light box test and object recognition testing with variations in inter-trial-interval, olfactory recognition and object location testing. Independent T-tests were used to compare data by individual baseline characteristics, i.e. birth weight, weight at testing, sex, litter #, litter size. RESULTS: In the open field test, median time spent in the center was 3.64 s (0.84-41.36) for the 9 rabbits who entered the center; median distance moved in the arena was 874.42 cm (54.20-3444.83). In the dark light box test, 12 rabbits entered the light compartment. In the object recognition task, rabbits spent significantly less time exploring the familiar object compared to the novel (0.40 s [0-2.8] vs. 3.17 s [1.30-32.69]; P = 0.003) when using a 30-min inter-trial interval, as well with a 90-min inter-trial interval: 0.87 s [0-7.8] vs. 7.65 s [0-37.6] (P = 0.008). However, recognition was lost when using a 24-h inter-trial interval (time spent exploring the familiar object: 3.33 [0-10.90]; novel object:3.87 [1.15-48.53]; n.s). In the object location task and in olfactory object recognition task, median discrimination indexes were 0.69 (-1 to 1) and 0.37 (-0.38 to 0.78) respectively, higher than level expected by chance (P < 0.001). Litter size >3 during the neonatal period was associated with increased explorative behavior in the dark light box test (P = 0.046) and in the visual object recognition task (P = 0.005), whereas body weight and sex were not. CONCLUSIONS: Settings and outcome measures for multiple behavioral tests, providing reference values and considerations for future developmental studies are reported. Discrimination and memory in the rabbit appear to relate to litter characteristics, although a larger sample size is needed to confirm our findings.


Assuntos
Comportamento Exploratório , Tamanho da Ninhada de Vivíparos , Reconhecimento Psicológico , Animais , Escala de Avaliação Comportamental , Discriminação Psicológica , Feminino , Masculino , Atividade Motora , Percepção Olfatória , Coelhos , Projetos de Pesquisa
9.
Phys Rev Lett ; 120(5): 052502, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481154

RESUMO

We investigate the emergence of halos and Efimov states in nuclei by use of a newly designed model that combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes ^{72}Ca (^{70}Ca+n+n) an ideal realistic candidate on the neutron dripline, and we use it as a representative example that illustrates our broadly applicable conclusions. By smooth variation of the interactions we simulate the crossover from well-bound systems to structures beyond the threshold of binding, and find that halo configurations emerge from the mean-field structure for three-body binding energy less than ∼100 keV. Strong evidence is provided that Efimov states cannot exist in nuclei. The structure that bears the most resemblance to an Efimov state is a giant halo extending beyond the neutron-core scattering length. We show that the observable large-distance decay properties of the wave function can differ substantially from the bulk part at short distances, and that this evolution can be traced with our combination of few- and many-body formalisms. This connection is vital for interpretation of measurements such as those where an initial state is populated in a reaction or by a beta decay.

10.
Mol Psychiatry ; 23(5): 1145-1156, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28630453

RESUMO

In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n=93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n=98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD.


Assuntos
Epigênese Genética , Transtornos de Estresse Pós-Traumáticos/genética , Adulto , Estudos de Coortes , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Estudos Longitudinais , Masculino , Militares/psicologia , Estudos Prospectivos , Proteínas Repressoras , Transtornos de Estresse Pós-Traumáticos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Neurosci Biobehav Rev ; 75: 166-182, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161509

RESUMO

Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.


Assuntos
Asfixia , Encéfalo , Animais , Asfixia Neonatal , Feminino , Humanos , Hipóxia-Isquemia Encefálica , Recém-Nascido Prematuro , Gravidez , Ratos
12.
Cell Mol Life Sci ; 74(3): 509-523, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27628303

RESUMO

Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Tronco Encefálico/patologia , Metilação de DNA , Epigênese Genética , Animais , Tronco Encefálico/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/patologia , Humanos
13.
Transl Psychiatry ; 6(9): e885, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27598969

RESUMO

The current diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders are being challenged by the heterogeneity and the symptom overlap of psychiatric disorders. Therefore, a framework toward a more etiology-based classification has been initiated by the US National Institute of Mental Health, the research domain criteria project. The basic neurobiology of human psychiatric disorders is often studied in rodent models. However, the differences in outcome measurements hamper the translation of knowledge. Here, we aimed to present a translational panic model by using the same stimulus and by quantitatively comparing the same outcome measurements in rodents, healthy human subjects and panic disorder patients within one large project. We measured the behavioral-emotional and bodily response to CO2 exposure in all three samples, allowing for a reliable cross-species comparison. We show that CO2 exposure causes a robust fear response in terms of behavior in mice and panic symptom ratings in healthy volunteers and panic disorder patients. To improve comparability, we next assessed the respiratory and cardiovascular response to CO2, demonstrating corresponding respiratory and cardiovascular effects across both species. This project bridges the gap between basic and human research to improve the translation of knowledge between these disciplines. This will allow significant progress in unraveling the etiological basis of panic disorder and will be highly beneficial for refining the diagnostic categories as well as treatment strategies.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Modelos Animais de Doenças , Medo/efeitos dos fármacos , Camundongos , Transtorno de Pânico/psicologia , Pânico/efeitos dos fármacos , Adolescente , Adulto , Animais , Pressão Sanguínea/efeitos dos fármacos , Capnografia , Dióxido de Carbono/efeitos adversos , Feminino , Voluntários Saudáveis , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno de Pânico/fisiopatologia , Adulto Jovem
15.
Eur Neuropsychopharmacol ; 26(1): 65-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26653128

RESUMO

Growing evidence indicates that impairment of the stress response, in particular the negative feedback regulation mechanism exerted by the hypothalamo-pituitary-adrenal (HPA) axis, might be responsible for the hippocampal atrophy observed in depressed patients. Antidepressants, possibly through the activation of BDNF signaling, may enhance neuroplasticity and restore normal hippocampal functions. In this context, glucocorticoid receptor-impaired (GR-i) mice-a transgenic mouse model of reduced GR-induced negative feedback regulation of the HPA axis-were used to investigate the role of BDNF/TrkB signaling in the behavioral and neurochemical effects of the new generation antidepressant drug, agomelatine. GR-i mice exhibited marked alterations in depressive-like and anxiety-like behaviors, together with a decreased cell proliferation and altered levels of neuroplastic and epigenetic markers in the hippocampus. GR-i mice and their wild-type littermates were treated for 21 days with vehicle, agomelatine (50mg/kg/day; i.p) or the TrkB inhibitor Ana-12 (0.5mg/kg/day, i.p) alone, or in combination with agomelatine. Chronic treatment with agomelatine resulted in antidepressant-like effects in GR-i mice and reversed the deficit in hippocampal cell proliferation and some of the alterations of mRNA plasticity markers in GR-i mice. Ana-12 blocked the effect of agomelatine on motor activity as well as its ability to restore a normal hippocampal cell proliferation and expression of neurotrophic factors. Altogether, our findings indicate that agomelatine requires TrkB signaling to reverse some of the molecular and behavioral alterations caused by HPA axis impairment.


Assuntos
Acetamidas/farmacologia , Antidepressivos/farmacologia , Transtorno Depressivo/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Receptor trkB/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Azepinas/farmacologia , Benzamidas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Medo/efeitos dos fármacos , Medo/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptor trkB/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Método Simples-Cego , Comportamento Social
16.
Transl Psychiatry ; 5: e655, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26460479

RESUMO

Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Hipocampo , Ácido gama-Aminobutírico/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Caderinas/genética , Modelos Animais de Doenças , Genes Supressores de Tumor , Hipocampo/metabolismo , Hipocampo/patologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Psicopatologia , Transmissão Sináptica/genética
17.
Transl Psychiatry ; 5: e642, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26393488

RESUMO

The selective serotonin reuptake inhibitor (SSRI) fluoxetine is widely prescribed for the treatment of symptoms related to a variety of psychiatric disorders. After chronic SSRI treatment, some symptoms remediate on the long term, but the underlying mechanisms are not yet well understood. Here we studied the long-term consequences (40 days after treatment) of chronic fluoxetine exposure on genome-wide gene expression. During the treatment period, we measured body weight; and 1 week after treatment, cessation behavior in an SSRI-sensitive anxiety test was assessed. Gene expression was assessed in hippocampal tissue of adult rats using transcriptome analysis and several differentially expressed genes were validated in independent samples. Gene ontology analysis showed that upregulated genes induced by chronic fluoxetine exposure were significantly enriched for genes involved in myelination. We also investigated the expression of myelination-related genes in adult rats exposed to fluoxetine at early life and found two myelination-related genes (Transferrin (Tf) and Ciliary neurotrophic factor (Cntf)) that were downregulated by chronic fluoxetine exposure. Cntf, a neurotrophic factor involved in myelination, showed regulation in opposite direction in the adult versus neonatally fluoxetine-exposed groups. Expression of myelination-related genes correlated negatively with anxiety-like behavior in both adult and neonatally fluoxetine-exposed rats. In conclusion, our data reveal that chronic fluoxetine exposure causes on the long-term changes in expression of genes involved in myelination, a process that shapes brain connectivity and contributes to symptoms of psychiatric disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Ciliar/genética , Fluoxetina/farmacologia , Hipocampo , Efeitos Adversos de Longa Duração , Transferrina/genética , Regulação para Cima/efeitos dos fármacos , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Efeitos Adversos de Longa Duração/diagnóstico , Efeitos Adversos de Longa Duração/etiologia , Efeitos Adversos de Longa Duração/metabolismo , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/genética , Farmacogenética , Ratos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
18.
Prog Neurobiol ; 129: 58-78, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25930682

RESUMO

Panic attacks (PAs), the core feature of panic disorder, represent a common phenomenon in the general adult population and are associated with a considerable decrease in quality of life and high health care costs. To date, the underlying pathophysiology of PAs is not well understood. A unique feature of PAs is that they represent a rare example of a psychopathological phenomenon that can be reliably modeled in the laboratory in panic disorder patients and healthy volunteers. The most effective techniques to experimentally trigger PAs are those that acutely disturb the acid-base homeostasis in the brain: inhalation of carbon dioxide (CO2), hyperventilation, and lactate infusion. This review particularly focuses on the use of CO2 inhalation in humans and rodents as an experimental model of panic. Besides highlighting the different methodological approaches, the cardio-respiratory and the endocrine responses to CO2 inhalation are summarized. In addition, the relationships between CO2 level, changes in brain pH, the serotonergic system, and adaptive physiological and behavioral responses to CO2 exposure are presented. We aim to present an integrated psychological and neurobiological perspective. Remaining gaps in the literature and future perspectives are discussed.


Assuntos
Encéfalo/fisiopatologia , Dióxido de Carbono/metabolismo , Homeostase/fisiologia , Transtorno de Pânico/fisiopatologia , Serotonina/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio
19.
Neuroscience ; 290: 379-88, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25655215

RESUMO

Pregnancy is a time of marked neural, physiological and behavioral plasticity in the female and is often a time when women are more vulnerable to stress and stress-related diseases, such as depression and anxiety. Unfortunately the impact of stress during gestation on neurobiological processes of the mother has yet to be fully determined, particularly with regard to changes in the hippocampus; a brain area that plays an important role in stress-related diseases. The present study aimed to determine how stress early in pregnancy may affect hippocampal plasticity in the pregnant female and whether these effects differ from those in virgin females. For this purpose, adult age-matched pregnant and virgin female Sprague-Dawley rats were divided into two conditions: (1) Control and (2) Stress. Females in the stress condition were restrained during days 5-11 of gestation and at matched time-points in virgin females. All pregnant females received an injection of bromodeoxyuridine (BrdU) on day 1 of gestation and were sacrificed 21 days later. The same procedure was carried out at matched time points in virgin females. Results show that for number of Ki67-immunoreactive (ir) cells and doublecortin (DCX)-ir cells, there were significant interactions between reproductive state (pregnant/virgin) and stress exposure (p=.05, p=.04, respectively) with control virgin and stressed pregnant females having more Ki67-ir cells than control pregnant females and more DCX-ir cells than stressed virgin females. Results also show that pregnant females had significantly greater glucocorticoid receptor (GR) density in the CA1, CA3 and granule cell layer compared to virgin females. In addition, there was a main effect of stress on GR density in the CA3 region, with stressed females having significantly lower GR density compared to control females (p=.01). This work adds to our understanding of how stress and reproductive state affect plasticity in the female hippocampus.


Assuntos
Hipocampo/fisiopatologia , Neurogênese/fisiologia , Gravidez/fisiologia , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Bromodesoxiuridina , Proteína Duplacortina , Feminino , Antígeno Ki-67/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA