Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Pathog ; 14(11): e1007321, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30440029

RESUMO

Antigenic variation by variant surface glycoprotein (VSG) coat switching in African trypanosomes is one of the most elaborate immune evasion strategies found among pathogens. Changes in the identity of the transcribed VSG gene, which is always flanked by 70-bp and telomeric repeats, can be achieved either by transcriptional or DNA recombination mechanisms. The major route of VSG switching is DNA recombination, which occurs in the bloodstream VSG expression site (ES), a multigenic site transcribed by RNA polymerase I. Recombinogenic VSG switching is frequently catalyzed by homologous recombination (HR), a reaction normally triggered by DNA breaks. However, a clear understanding of how such breaks arise-including whether there is a dedicated and ES-focused mechanism-is lacking. Here, we synthesize data emerging from recent studies that have proposed a range of mechanisms that could generate these breaks: action of a nuclease or nucleases; repetitive DNA, most notably the 70-bp repeats, providing an intra-ES source of instability; DNA breaks derived from the VSG-adjacent telomere; DNA breaks arising from high transcription levels at the active ES; and DNA lesions arising from replication-transcription conflicts in the ES. We discuss the evidence that underpins these switch-initiation models and consider what features and mechanisms might be shared or might allow the models to be tested further. Evaluation of all these models highlights that we still have much to learn about the earliest acting step in VSG switching, which may have the greatest potential for therapeutic intervention in order to undermine the key reaction used by trypanosomes for their survival and propagation in the mammalian host.


Assuntos
Trypanosoma/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Variação Antigênica/genética , Variação Antigênica/fisiologia , DNA/metabolismo , Replicação do DNA/imunologia , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Telômero/genética , Transcrição Gênica/genética , Trypanosoma/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/genética , Tripanossomíase Africana/imunologia
2.
PLoS Pathog, v. 14, n. 11, e1007321, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2608

RESUMO

Antigenic variation by variant surface glycoprotein (VSG) coat switching in African trypanosomes is one of the most elaborate immune evasion strategies found among pathogens. Changes in the identity of the transcribed VSG gene, which is always flanked by 70-bp and telomeric repeats, can be achieved either by transcriptional or DNA recombination mechanisms. The major route of VSG switching is DNA recombination, which occurs in the bloodstream VSG expression site (ES), a multigenic site transcribed by RNA polymerase I. Recombinogenic VSG switching is frequently catalyzed by homologous recombination (HR), a reaction normally triggered by DNA breaks. However, a clear understanding of how such breaks arise—including whether there is a dedicated and ES-focused mechanism—is lacking. Here, we synthesize data emerging from recent studies that have proposed a range of mechanisms that could generate these breaks: action of a nuclease or nucleases; repetitive DNA, most notably the 70-bp repeats, providing an intra-ES source of instability; DNA breaks derived from the VSG-adjacent telomere; DNA breaks arising from high transcription levels at the active ES; and DNA lesions arising from replication–transcription conflicts in the ES. We discuss the evidence that underpins these switch-initiation models and consider what features and mechanisms might be shared or might allow the models to be tested further. Evaluation of all these models highlights that we still have much to learn about the earliest acting step in VSG switching, which may have the greatest potential for therapeutic intervention in order to undermine the key reaction used by trypanosomes for their survival and propagation in the mammalian host.

3.
PLoS Pathog. ; 14(11): e1007321, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15686

RESUMO

Antigenic variation by variant surface glycoprotein (VSG) coat switching in African trypanosomes is one of the most elaborate immune evasion strategies found among pathogens. Changes in the identity of the transcribed VSG gene, which is always flanked by 70-bp and telomeric repeats, can be achieved either by transcriptional or DNA recombination mechanisms. The major route of VSG switching is DNA recombination, which occurs in the bloodstream VSG expression site (ES), a multigenic site transcribed by RNA polymerase I. Recombinogenic VSG switching is frequently catalyzed by homologous recombination (HR), a reaction normally triggered by DNA breaks. However, a clear understanding of how such breaks arise—including whether there is a dedicated and ES-focused mechanism—is lacking. Here, we synthesize data emerging from recent studies that have proposed a range of mechanisms that could generate these breaks: action of a nuclease or nucleases; repetitive DNA, most notably the 70-bp repeats, providing an intra-ES source of instability; DNA breaks derived from the VSG-adjacent telomere; DNA breaks arising from high transcription levels at the active ES; and DNA lesions arising from replication–transcription conflicts in the ES. We discuss the evidence that underpins these switch-initiation models and consider what features and mechanisms might be shared or might allow the models to be tested further. Evaluation of all these models highlights that we still have much to learn about the earliest acting step in VSG switching, which may have the greatest potential for therapeutic intervention in order to undermine the key reaction used by trypanosomes for their survival and propagation in the mammalian host.

4.
PLoS Pathog ; 8(8): e1002900, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952449

RESUMO

Trypanosoma brucei is a master of antigenic variation and immune response evasion. Utilizing a genomic repertoire of more than 1000 Variant Surface Glycoprotein-encoding genes (VSGs), T. brucei can change its protein coat by "switching" from the expression of one VSG to another. Each active VSG is monoallelically expressed from only one of approximately 15 subtelomeric sites. Switching VSG expression occurs by three predominant mechanisms, arguably the most significant of which is the non-reciprocal exchange of VSG containing DNA by duplicative gene conversion (GC). How T. brucei orchestrates its complex switching mechanisms remains to be elucidated. Recent work has demonstrated that an exogenous DNA break in the active site could initiate a GC based switch, yet the source of the switch-initiating DNA lesion under natural conditions is still unknown. Here we investigated the hypothesis that telomere length directly affects VSG switching. We demonstrate that telomerase deficient strains with short telomeres switch more frequently than genetically identical strains with long telomeres and that, when the telomere is short, switching preferentially occurs by GC. Our data supports the hypothesis that a short telomere at the active VSG expression site results in an increase in subtelomeric DNA breaks, which can initiate GC based switching. In addition to their significance for T. brucei and telomere biology, the findings presented here have implications for the many diverse pathogens that organize their antigenic genes in subtelomeric regions.


Assuntos
Variação Antigênica/genética , Variação Genética , Telômero/genética , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , DNA de Protozoário/genética , Conversão Gênica , Duplicação Gênica , Humanos , Fenótipo , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Homeostase do Telômero/genética , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
5.
J Bacteriol ; 190(11): 3859-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375561

RESUMO

The tad (tight adherence) locus of Aggregatibacter actinomycetemcomitans includes genes for the biogenesis of Flp pili, which are necessary for bacterial adhesion to surfaces, biofilm formation, and pathogenesis. Although studies have elucidated the functions of some of the Tad proteins, little is known about the regulation of the tad locus in A. actinomycetemcomitans. A promoter upstream of the tad locus was previously identified and shown to function in Escherichia coli. Using a specially constructed reporter plasmid, we show here that this promoter (tadp) functions in A. actinomycetemcomitans. To study expression of the pilin gene (flp-1) relative to that of tad secretion complex genes, we used Northern hybridization analysis and a lacZ reporter assay. We identified three terminators, two of which (T1 and T2) can explain flp-1 mRNA abundance, while the third (T3) is at the end of the locus. T1 and T3 have the appearance and behavior of intrinsic terminators, while T2 has a different structure and is inhibited by bicyclomycin, indicating that T2 is probably Rho dependent. To help achieve the appropriate stoichiometry of the Tad proteins, we show that a transcriptional-termination cascade is important to the proper expression of the tad genes. These data indicate a previously unreported mechanism of regulation in A. actinomycetemcomitans and lead to a more complete understanding of its Flp pilus biogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pasteurellaceae/genética , Pasteurellaceae/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transcrição Gênica/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...