Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(23): 17224-17233, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33180482

RESUMO

We describe here nitric oxide dioxygenation (NOD) by the dioxygen manganese porphyrin adducts Mn(Por)(η2-O2) (Por2- = the meso-tetra-phenyl or meso-tetra-p-tolylporphyrinato dianions, TPP2- and TTP2-). The Mn(Por)(η2-O2) was assembled by adding O2 to sublimed layers of MnII(Por). When NO was introduced and the temperature was slowly raised from 80 to 120 K, new IR bands with correlated intensities grew concomitant with depletion of the υ(O2) band. Isotope labeling experiments with 18O2, 15NO, and N18O combined with DFT calculations provide the basis for identifying the initial intermediates as the six-coordinate peroxynitrito complexes (ON)Mn(Por)(η1-OONO). Further warming to room temperature led to formation of the nitrato complexes Mn(Por)(η1-ONO2), thereby demonstrating the ability of these metal centers to promote NOD. However, comparable quantities of the nitrito complexes Mn(Por)(η1-ONO) are also formed. In contrast, when the analogous reactions were initiated with the weak σ-donor ligand tetrahydrofuran or dimethyl sulfide present in the layers, formation of Mn(Por)(η1-ONO2) is strongly favored (∼90%). The latter are formed via a 6-coordinate intermediate (L)Mn(Por)(η1-ONO2) (L = THF or DMS) that loses L upon warming. These reaction patterns are compared to those observed previously with analogous iron and cobalt porphyrin complexes.

2.
Inorg Chem ; 57(9): 4795-4798, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29633843

RESUMO

The reaction of dimethyl sulfide (DMS) and tetrahydrothiophene (THT) with thin, amorphous layers of the nitrato complexes Fe(Por)(η2-O2NO) (Por = meso-tetraphenylporphyrinato dianion or meso-tetra- p-tolylporphyrinato dianion) at low temperature leads to formation of the corresponding six-coordinate complexes Fe(Por)(L)(η1-ONO2) (L = DMS, THT) as characterized by Fourier transform infrared and optical spectroscopy measurements. Adduct formation was accompanied by bidentate-to-monodentate linkage isomerization of the nitrato ligand, with the FeIII center remaining in a high-spin electronic state. These adducts are thermally unstable; warming to room temperature restores the initial Fe(Por)(η2-O2NO) species.

3.
Inorg Chem ; 55(19): 9517-9520, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27643944

RESUMO

Low-temperature in situ Fourier transform infrared and UV-vis measurements show that trimethylphosphine (PMe3) reacts with microporous layers of FeII(TTP)(NO) (TTP = meso-tetra-p-tolylporphyrinato dianion; NO = nitric oxide) to form the previously unknown six-coordinate complex FeII(TTP)(PMe3)(NO). Upon warming this compound to room temperature in the presence of excess phosphine, the NO ligand is completely replaced by phosphine, resulting in formation of the bis(trimethylphosphine) complex FeII(TTP)(PMe3)2. Simultaneously, the NO released oxidizes free PMe3 to the corresponding phosphine oxide (OPMe3) with concomitant formation of nitrous oxide (N2O).

4.
Inorg Chem ; 48(23): 11236-41, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19886653

RESUMO

Spectroscopic studies demonstrate that the 5-coordinate O-nitrito complexes Fe(Por)(eta(1)-ONO) (Por--meso-tetraphenyl- or meso-tetra-p-tolyl-porphyrinato dianions) react with the thioethers (R(2)S) dimethylsulfide and tetrahydrothiophene to give the 6-coordinate N-nitrito complexes Fe(Por)(R(2)S)(NO(2)). These reactions were conducted in low-temperature porous layered solids formed in a cryostat; however, with excess R(2)S in the atmosphere, the same species are moderately stable at room temperature. Six-coordinate O-nitrito isomers were not observed with the R(2)S proximal ligands, even though DFT calculations for the Fe(P)(DMS)(eta(1)-ONO) and Fe(P)(DMS)(NO(2)) models (P = porphinato dianion, DMS = dimethyl sulfide) show the latter to be only modestly lower energy (approximately 8 kJ/mol) than the former. Leaving this system at room temperature in the presence of excess R(2)S leads eventually to the appearance in the FTIR spectra of the nu(NO) band characteristic of the ferrous nitrosyl Fe(Por)(NO). Concomitantly, the mass spectrum of the gas phase demonstrated the molecular peaks of the sulfoxides R(2)SO, indicating oxygen atom transfer reactivity for the ferric porphryinato complexes of nitrite.


Assuntos
Compostos Férricos/química , Metaloporfirinas/química , Nitrocompostos/química , Ligantes , Modelos Químicos , Teoria Quântica
5.
Inorg Chem ; 47(17): 7852-62, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18665590

RESUMO

Complexes of the (nitro)( meso-tetrakis(2- N-methylpyridyl)porphyinato)cobalt(III) cation, [LCoTMpyP(2)(NO 2)] (4+), in which L = water or ethanol have been immobilized through ionic attraction within Nafion films (Naf). These immobilized six-coordinate species, [LCoTMPyP(2)(NO 2)/Naf], have been found to catalyze the oxidation of triphenylphosphine in ethanol solution by dioxygen, therefore retaining the capacity to activate dioxygen catalytically without an additional reducing agent as was previously observed in nonaqueous solution for the non-ionic (nitro)cobalt porphyrin analogs. Heating these immobilized six-coordinate species under vacuum conditions results in the formation of the five-coordinate nitro derivatives, [CoTMPyP(2)(NO 2)/Naf] at 85 degrees C and [CoTMPyP(2)/Naf] at 110 degrees C. The catalytic oxidation of gas-phase cyclohexene with O 2 is supported only by the resulting immobilized five-coordinate nitro complex as was previously seen with the corresponding solution-phase catalyst in dichloromethane solution. The simultaneous catalytic oxidation of triphenylphosphine and cyclohexene with O 2 in the presence of the Nafion-bound six-coordinate ethanol nitro complex is also observed; however, this process is not seen for the CoTPP derivative in dichloromethane solution. The oxidation reactions do not occur with unmodified Nafion film or with Nafion-supported [BrCo(III)TmpyP]/Naf or [Co(II)TmpyP]/Naf, indicating the necessity for the nitro/nitrosyl ligand in the oxidation mechanism. The existence of a second reactive intermediate is indicated because the two simultaneous oxidation reactions depend on two distinct oxygen atom-transfer steps having different reactivity. The absence of homogeneous cyclohexene oxidation by the six-coordinate (H 2O)CoTPP(NO 2) derivatives in the presence of Ph 3P and O 2 in dichloromethane solution indicates that the second reactive intermediate is lost by an unidentified route only in solution, implying that the immobilization of it in Nafion allows it to react with cyclohexene. Although direct observation of this species has not been achieved, a comparitive DFT study of likely intermediates in several catalytic oxidation mechanisms at the BP 6-31G* level supports the possibility that this intermediate is a peroxynitro species on the basis of relative thermodynamic accessibility. The alternate intermediates evaluated include the reduced cobalt(II) porphyrin, the dioxygen adduct cobalt(III)-O 2 (-), the oxidized cobalt(II) pi-cation radical, and the nitrito complex, cobalt(III)-ONO.

6.
Inorg Chem ; 46(17): 7024-31, 2007 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-17636900

RESUMO

The reactions of the nitrogen Lewis bases (B) 1-methylimidazole (1-MeIm), pyridine (Py), and NH3 as gases with sublimed layers containing the 5-coordinate nitrito iron(III)-porphyrinato complexes Fe(Por)(eta1-ONO) (1) are described (Por = meso-tetraphenyl-porphyrinato or meso-tetra-p-tolyl-porphyrinato dianions). In situ FTIR and optical spectra are used to characterize the formation of the 6-coordinate nitro complexes formed by the reaction of 1 with B = 1-MeIm, Py, or NH3. These represent the first examples of 6-coordinate amino-nitro complexes with sterically unprotected iron-porphyrins. The interaction of ammonia with Fe(Por)(ONO) at 140 K initially led to the nitrito species Fe(Por)(NH3)(eta1-ONO), and this species isomerized to the nitro complexes Fe(Por)(NH3)(eta1-NO2) upon warming to 180 K. When the latter were warmed to room temperature under intense pumping, the initial nitrito complexes Fe(Por)(eta1-ONO) were restored. Assignments of vibrational frequencies for the coordinated nitro group in 6-coordinate iron-porphyrin complexes are given and confirmed using 15N-labeled nitrogen dioxide to identify characteristic infrared bands. For M(Por)(B)(NO2) complexes (M = Fe or Co), an inverse correlation between the net charge transfer from the axial ligand B to the nitro group and the value of Deltanu = nua(NO2) - nus(NO2) is proposed. These observations are discussed in the context of growing interest in potential physiological roles of nitrite ion reactions with ferro- and ferri-heme proteins.


Assuntos
Compostos Férricos/química , Óxidos de Nitrogênio/química , Compostos Organometálicos/química , Porfirinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Sublimação Química
7.
J Am Chem Soc ; 129(12): 3576-85, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17338521

RESUMO

Detailed experimental studies are described for reactions of several nitrogen oxides with iron porphyrin models for heme/NxOy systems. It is shown by FTIR and optical spectroscopy and by isotope labeling experiments that reaction of small increments of NO2 with sublimed thin layers of the iron(II) complex Fe(Por) (Por = meso-tetraphenylporphyrinato dianion, TPP, or meso-tetra-p-tolylporphyrinato dianion, TTP) leads to formation of the 5-coordinate nitrito complexes Fe(Por)(eta1-ONO) (1), which are fairly stable but very slowly decompose under vacuum giving mostly the corresponding nitrosyl complexes Fe(Por)(NO). Further reaction of 1 with new NO2 increments leads to formation of the nitrato complex Fe(Por)(eta2-O2NO) (2). The interaction of NO with 1 at low temperature involves ligand addition to give the nitrito-nitrosyl complexes Fe(Por)(eta1-ONO)(NO) (3); however, these isomerize to the nitro-nitrosyl analogs Fe(Por)(eta1-NO2)(NO) (4) upon warming. Experiments with labeled nitrogen oxides argue for an intramolecular isomerization ("flipping") mechanism rather than one involving dissociation and rebinding of NO2. The Fe(III) centers in the 6-coordinate species 3 and 4 are low spin in contrast to 1, which appears to be high-spin, although DFT computations of the porphinato models Fe(P)(nitrite) suggest that the doublet nitro species and the quartet and sextet nitrito complexes are all relatively close in energy. The nitro-nitrosyl complex 4 is stable under an NO atmosphere but decomposes under intense pumping to give a mixture of the ferrous nitrosyl complex Fe(Por)(NO) and the ferric nitrito complex Fe(Por)(eta1-ONO) indicating the competitive dissociation of NO and NO2. Hence, loss of NO from 4 is accompanied with nitro --> nitrito isomerization consistent with 1 being the more stable of the 5-coordinate NO2 complexes of iron porphyrins.


Assuntos
Compostos Férricos/química , Óxidos de Nitrogênio/química , Porfirinas/química , Isomerismo , Modelos Moleculares , Conformação Molecular , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...