Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(3): e0327723, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38345378

RESUMO

Pneumocystis jirovecii is a major fungal pathogen of humans that causes life-threatening lung infections in immunocompromised individuals. Despite its huge global impact upon human health, our understanding of the pathobiology of this deadly fungus remains extremely limited, largely because it is not yet possible to cultivate Pneumocystis in vitro, independently of the host. However, a recent paper by Munyonho et al. offers a major step forward (F. T. Munyonho, R. D. Clark, D. Lin, M. S. Khatun, et al., 2023, mBio 15:e01464-23, https://doi.org/10.1128/mbio.01464-23). They show that it is possible to maintain both the trophozoite and cyst forms of the mouse pathogen, Pneumocystis murina, in precision-cut lung slices for several weeks. Furthermore, they demonstrate that this offers the exciting opportunity to examine potential virulence factors such as possible biofilm formation as well as antifungal drug responses in the lung.


Assuntos
Pneumocystis , Pneumonia por Pneumocystis , Humanos , Animais , Camundongos , Antifúngicos , Pulmão
2.
Nat Microbiol ; 9(1): 4-5, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177299
3.
PLoS Negl Trop Dis ; 18(1): e0011850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198478

RESUMO

Emergomyces africanus is a recently identified thermally-dimorphic fungal pathogen that causes disseminated infection in people living with advanced HIV disease. Known as emergomycosis, this disseminated disease is associated with very high case fatality rates. Over the last decade, improved diagnostics and fungal identification in South Africa resulted in a dramatic increase in the number of reported cases. Although the true burden of disease is still unknown, emergomycosis is among the most frequently diagnosed dimorphic fungal infections in Southern Africa; and additional species in the genus have been identified on four continents. Little is known about the pathogenesis and the host's immune response to this emerging pathogen. Therefore, we established a murine model of pulmonary infection using a clinical isolate, E. africanus (CBS 136260). Both conidia and yeast forms caused pulmonary and disseminated infection in mice with organisms isolated in culture from lung, spleen, liver, and kidney. Wild-type C57BL/6 mice demonstrated a drop in body weight at two weeks post-infection, corresponding to a peak in fungal burden in the lung, spleen, liver, and kidney. An increase in pro-inflammatory cytokine production was detected in homogenized lung supernatants including IFN-γ, IL-1ß, IL-6, IL12-p40 and IL-17 at three- and four-weeks post-infection. No significant differences in TNF, IL-12p70 and IL-10 were observed in wild-type mice between one and four-weeks post-infection. Rag-1-deficient mice, lacking mature T-and B-cells, had an increased fungal burden associated with reduced IFN-γ production. Together our data support a protective T-helper type-1 immune response to E. africanus infection. This may provide a possible explanation for the susceptibility of only a subset of people living with advanced HIV disease despite hypothesized widespread environmental exposure. In summary, we have established a novel murine model of E. africanus disease providing critical insights into the host immune components required for eliminating the infection.


Assuntos
Infecções por HIV , Micoses , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Micoses/microbiologia
4.
Parasite Immunol ; 45(2): e12953, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36175380

RESUMO

The emergence of deadly fungal infections in Africa is primarily driven by a disproportionately high burden of human immunodeficiency virus (HIV) infections, lack of access to quality health care, and the unavailability of effective antifungal drugs. Immunocompromised people in Africa are therefore at high risk of infection from opportunistic fungal pathogens such as Cryptococcus neoformans and Pneumocystis jirovecii, which are associated with high morbidity, mortality, and related socioeconomic impacts. Other emerging fungal threats include Emergomyces spp., Histoplasma spp., Blastomyces spp., and healthcare-associated multi-drug resistant Candida auris. Socioeconomic development and the Covid-19 pandemic may influence shifts in epidemiology of invasive fungal diseases on the continent. This review discusses the epidemiology, clinical manifestations, and current management strategies available for these emerging fungal diseases in Africa. We also discuss gaps in knowledge, policy, and research to inform future efforts at managing these fungal threats.


Assuntos
COVID-19 , Infecções por HIV , Micoses , Humanos , Pandemias , COVID-19/epidemiologia , Micoses/tratamento farmacológico , Micoses/epidemiologia , Micoses/microbiologia , Antifúngicos/uso terapêutico
5.
Mediators Inflamm ; 2020: 4361043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410852

RESUMO

A hallmark of ulcerative colitis is the chronic colonic inflammation, which is the result of a dysregulated intestinal mucosal immune response. Epithelial barrier disruption which allows the entry of microorganisms eventually leads to more aggressive inflammation and potentially the removal of the colon. We have previously shown that the T helper- (Th-) type 2 cytokines, Interleukin- (IL-) 4 and IL-13, mediate CD4+ T cell- or B cell-driven inflammation in the oxazolone-induced mouse model of ulcerative colitis. In contrast, mice deficient in the shared receptor of IL-4 and IL-13, IL-4 receptor-alpha (IL-4Rα), on all cells develop an exacerbated disease phenotype. This suggests that a regulatory role of IL-4Rα is required to protect against severe colitis. However, the cell populations responsible for regulating the severity of disease onset through IL-4Rα in colitis are yet to be identified. By deleting IL-4Rα on specific cell subsets shown to play a role in mediating colitis, we determined their role in a loss of function approach. Our data demonstrated that the loss of IL-4Rα signalling on intestinal epithelial cells, smooth muscle cells, and macrophages/neutrophils had no effect on alleviating the pathology associated with colitis. These results suggest that IL-4/IL-13 signalling through IL-4Rα on nonhematopoietic intestinal epithelial or smooth muscle cells and hematopoietic macrophage/neutrophils has a redundant role in driving acute oxazolone colitis.


Assuntos
Colite/metabolismo , Células Epiteliais/metabolismo , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Colite/induzido quimicamente , Colo/metabolismo , Deleção de Genes , Inflamação , Interleucina-13/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxazolona , Transdução de Sinais
6.
Sci Rep ; 8(1): 6054, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643406

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

8.
Sci Rep ; 8(1): 885, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343807

RESUMO

The precise mechanisms leading to development of T helper type (Th)2-driven allergic responses are unknown. We aimed to determine how IL-4 receptor alpha (IL-4Rα) signaling on CD11c+ cells influences allergen-induced Th2 responses in mice. CD11ccreIL-4Rα-/l°x mice, deficient in IL-4Rα on dendritic cells and alveolar macrophages, were compared to IL-4Rα-/l°x littermate controls in models of allergic airway disease induced by OVA/alum, OVA alone or house dust mite. Cytokine responses, eosinophil and neutrophil infiltration into the lungs, airway hyperreactivity and mucus hypersecretion were evaluated after allergen challenge. In the OVA/alum model, CD11ccreIL-4Rα-/lox mice had similar airway hyperreactivity, eosinophil infiltration, Th2-type cytokine production and mucus hypersecretion to littermate controls. When alum was omitted during sensitization, CD11ccreIL-4Rα-/lox mice had similar airway hyperreactivity and mucus secretion but reduced Th2-type cytokine production and eosinophils, suggesting alum overrides the requirement for IL-4Rα signaling on CD11c+ cells in enhancing Th2-type responses. In the house dust mite model, CD11ccreIL-4Rα-/lox mice showed similar mucus secretion, but reduced Th2 responses, eosinophils, neutrophils and airway hyperreactivity, unlike previously tested LysMcreIL-4Rα-/lox mice, which lack IL-4Rα on alveolar macrophages but not on dendritic cells. Therefore, our results indicate that IL-4Rα signaling on dendritic cells promotes allergen-induced Th2 responses and eosinophil infiltration into the lung.


Assuntos
Asma/imunologia , Antígeno CD11c/imunologia , Hipersensibilidade/imunologia , Pyroglyphidae/imunologia , Receptores de Superfície Celular/imunologia , Alérgenos/imunologia , Compostos de Alúmen , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Eosinófilos/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...