Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 29(9): 1012-1020, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514933

RESUMO

Yeast cells have a remarkable ability to adapt to nutritional changes in their environment. During adaptation, nutrient-signaling pathways drive the selective endocytosis of nutrient transporters present at the cell surface. A current challenge is to understand the mechanistic basis of this regulation. Transporter endocytosis is triggered by their ubiquitylation, which involves the ubiquitin ligase Rsp5 and its adaptors of the arrestin-related family (ART). This step is highly regulated by nutrient availability. For instance, the monocarboxylate transporter Jen1 is ubiquitylated, endocytosed, and degraded upon exposure to glucose. The ART protein Rod1 is required for this overall process; yet Rod1 rather controls Jen1 trafficking later in the endocytic pathway and is almost dispensable for Jen1 internalization. Thus, how glucose triggers Jen1 internalization remains unclear. We report that another ART named Bul1, but not its paralogue Bul2, contributes to Jen1 internalization. Bul1 responds to glucose availability, and preferentially acts at the plasma membrane for Jen1 internalization. Thus, multiple ARTs can act sequentially along the endocytic pathway to control transporter homeostasis. Moreover, Bul1 is in charge of Jen1 endocytosis after cycloheximide treatment, suggesting that the functional redundancy of ARTs may be explained by their ability to interact with multiple cargoes in various conditions.


Assuntos
Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Arrestinas/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Simportadores/metabolismo , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos
2.
J Cell Biol ; 216(6): 1811-1831, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28468835

RESUMO

Nutrient availability controls the landscape of nutrient transporters present at the plasma membrane, notably by regulating their ubiquitylation and subsequent endocytosis. In yeast, this involves the Nedd4 ubiquitin ligase Rsp5 and arrestin-related trafficking adaptors (ARTs). ARTs are targeted by signaling pathways and warrant that cargo ubiquitylation and endocytosis appropriately respond to nutritional inputs. Here, we show that glucose deprivation regulates the ART protein Csr2/Art8 at multiple levels to trigger high-affinity glucose transporter endocytosis. Csr2 is transcriptionally induced in these conditions through the AMPK orthologue Snf1 and downstream transcriptional repressors. Upon synthesis, Csr2 becomes activated by ubiquitylation. In contrast, glucose replenishment induces CSR2 transcriptional shutdown and switches Csr2 to an inactive, deubiquitylated form. This glucose-induced deubiquitylation of Csr2 correlates with its phospho-dependent association with 14-3-3 proteins and involves protein kinase A. Thus, two glucose signaling pathways converge onto Csr2 to regulate hexose transporter endocytosis by glucose availability. These data illustrate novel mechanisms by which nutrients modulate ART activity and endocytosis.


Assuntos
Arrestina/metabolismo , Endocitose , Glucose/deficiência , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas 14-3-3/metabolismo , Arrestina/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Proteínas Nucleares/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Transcrição Gênica , Ubiquitinação
3.
Methods Mol Biol ; 1449: 117-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27613031

RESUMO

Ubiquitylation is a reversible posttranslational modification that is critical for most, if not all, cellular processes and essential for viability. Ubiquitin conjugates to substrate proteins either as a single moiety (monoubiquitylation) or as polymers composed of ubiquitin molecules linked to each other with various topologies and structures (polyubiquitylation). This contributes to an elaborate ubiquitin code that is decrypted by specific ubiquitin-binding proteins. Indeed, these different types of ubiquitylation have different functional outcomes, notably affecting the stability of the substrate, its interactions, its activity, or its subcellular localization. In this chapter, we describe protocols to determine whether a protein is ubiquitylated, to identify the site that is ubiquitylated, and provide direction to study the topology of the ubiquitin modification, in the yeast Saccharomyces cerevisiae.


Assuntos
Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...