Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 136(14): 3004-9, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21655605

RESUMO

A nanoscavenger of mercaptopropyl-modified silica microparticles has been developed for the determination of trace levels of mercury(II) in water. The synthesis of silica microparticles nanoscavengers is carried out by modification of pre-formed silica particles with mercaptopropyltrimethoxysilane or by incorporating the thiol modification agent during the growth of the silica particles. The silica nanoscavengers were characterized by SEM, TGA, particle analyzer, IR and the parameters influencing the extraction and recovery phases of the preconcentration process were performed by AAS. The results show that careful choice of particle size and surface characteristics produce a new mercapto-silica-nanoscavenger that disperses in water as a quasi-stable sol. This permits the facile recovery of the mercury-loaded nanoscavenger particles. No agitation is required during the mercury extraction as the dispersion is maintained by Brownian motion and slow gravitational sedimentation. The technique overcomes a number of problems, such as cross-contamination and decreases in mercury concentration during sample transportation to the laboratory. Recovery achieved reaches >97 ± 4% over a wide range of preconcentration factors. At a preconcentration factor of 50 the limit of detection (3σ) was 0.19 ng mL(-1). The method is environmentally friendly as only 300 mg of mercapto-nanoscavenger is used, no organic solvent is required for the extraction and the experiment is performed without the need for manual or mechanical agitation.


Assuntos
Mercúrio/análise , Nanoestruturas/química , Extração em Fase Sólida/métodos , Água/química , Mercúrio/isolamento & purificação , Compostos de Organossilício , Tamanho da Partícula , Silanos/química , Dióxido de Silício/química , Espectrofotometria Atômica , Propriedades de Superfície
2.
J Environ Monit ; 12(1): 135-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20082007

RESUMO

Technologies based on nanomaterials are developing daily, finding applications as diverse as new sensors for improved monitoring and detection, new medical imaging techniques, novel approaches to the treatment and remediation of contaminated land and green technologies for chemical production. An inevitable consequence of Man's exploitation of nanotechnology is both the deliberate and accidental release of manufactured nanomaterials into the environment. This presents the analytical science community with a challenge for which it is, at present, poorly prepared--the quantification of specific nanoparticles in the environment. The problem is the development of trace analysis methods targeted at solid phase species, rather than the dissolved species measured, for example, in a typical pesticide residue analysis. This will require the adoption of radically different approaches and techniques, many of which will be unfamiliar to the conventionally trained environmental analyst. This paper sets out to give a very brief overview of the techniques that are available, specifically questioning their suitability for the quantification of man-made nanoparticles in the aquatic environment. Suggestions are made as to how these techniques might be transferred from the characterization of synthetic products to the field of trace analysis. The analytical community is presented with a new frontier of environmental investigation that can only commence with the development of innovative approaches to the quantitative measurement of man-made nanomaterials in the environment.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas/análise , Poluentes Químicos da Água/análise , Água/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Resíduos de Praguicidas/análise , Espalhamento de Radiação , Espectrofotometria
3.
Analyst ; 130(10): 1432-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16172670

RESUMO

A new approach has been developed for the preconcentration of analytes from solution using nanoscavengers; monodisperse functionalised particles of sub-micron dimensions, that can be suspended as a quasi-stable sol in an aqueous solution, and quantitatively recovered with the analyte by conventional filtration. No external agitation of the sample is required as the particles move naturally through the sample by Brownian motion, convection and sedimentation. By careful choice and control of their particle size and surface chemistries, nanoscavengers can be designed to suit a number of different analytical problems. Surface modification of these nanometre-sized particles, through the grafting of complexing or partitioning functional groups, can produce nanoscavengers having affinities for specific analytes and operating through a wide range of mechanisms from covalent bonding to hydrophobic interaction. The approach is illustrated by the development of an extraction-based preconcentration of metals from solution that employs sub-micron Stöber-type silica spheres, the surfaces of which have been modified using chelating diamine and dithiocarbamate groups. The concept has potentially widespread applicability as it is neither limited to metal extractions, nor to the use of silica-based nanoscavengers. Minimal involvement of organic solvents make nanoscavengers a potentially environmentally benign ("green") alternative to many conventional solvent extraction techniques.

4.
Talanta ; 60(5): 1003-9, 2003 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-18969126

RESUMO

Silica gel modified with 3-mercaptopropyl-trimethoxysilane was used for the selective separation and pre-concentration of selenite (Se(IV)) from aqueous solutions containing Se(IV) and selenate (Se(VI)). Over a wide range of acidity, from 2 mol l(-1) HCl to pH 9.00, Se(IV) was taken up by the mercaptopropyl-silica with nearly 100% efficiency; Se(VI) however was unretained. Se(IV) content was determined by hydride generation atomic absorption spectrometry (HGAAS), following batch release of the selenium from the pre-concentration medium by acidic periodate. The overall pre-concentration efficiency, including both take-up and elution, in the range of 89-106%. The method was applied to spiked seawater samples containing as low as 800 ng l(-1) Se in selenite form. This solid-phase extraction system offers several major advantages over conventional solvent extraction procedures. It firstly exhibits high selectivity for Se(IV) over Se(VI). Using the solid-phase media, pre-concentration of Se(IV) in dilute water samples can be carried out in the field, stabilizing the selenite-selenium in a convenient form for transport and storage. In addition, selenium stored on silica is derived solely from Se(IV) overcoming problems of selenium redox speciation changes and loss during storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...