Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 932440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212332

RESUMO

Growing consumer demands for healthier foods have evoked trends in the food industry to replace synthetically produced colorants with naturally derived alternatives. Anthocyanins currently comprise the bulk of the natural colorant market, but betalains offer advantages where anthocyanins have limits. Amaranthus species are appealing betalain sources given their extensive pigmentation patterns and recognized food status around the world. An advantage of amaranths as natural food colorants is that, when grown as leafy vegetables, water extracts would be compliant with U.S. Food and Drug Administration guidelines as "vegetable juice" colorants. Thus, we developed a methodology based on U.S. FDA guidelines to investigate betalain diversity among forty-eight amaranth accessions grown as leafy vegetables. Total betacyanin concentrations ranged from 4.7 to 478.8 mg/100 g dry weight, with amaranthin and isoamaranthin identified as major constituents. Our findings will guide future research on amaranths to determine economic viability and suitability for growing natural colorant markets.

2.
Food Chem ; 310: 125734, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31791725

RESUMO

Anthocyanins are a major source of natural red colorants but currently face difficulties matching the hue range, stability, and affordability of synthetic options. Purple corn offers an FDA and EFSA-approved economical source of anthocyanin-based colorants. A C-glycosyl flavone and anthocyanin copigmentation system consisting of a flavone-rich anthocyanin-poor line and two anthocyanin-rich flavone-poor lines containing either pelargonidin or cyanidin-derived anthocyanins is described. This system offers a broad hue range and can improve stability. Cyanidin-rich model beverages had better stability than pelargonidin-rich beverages over time, but the addition of flavone-rich extract to both resulted in significantly longer half-lives (up to 50% longer). Flavone copigments produced hyperchromic and bathochromic shifts in both. A protective effect from flavone copigmentation was observed for glycosides. In contrast acylated forms displayed significantly shorter half-lives. Results suggest that corn C-glycosyl flavone-rich extracts could serve as a color enhancing and stabilizing agent for anthocyanin colorants.


Assuntos
Antocianinas/química , Flavonas/química , Corantes de Alimentos/química , Extratos Vegetais/química , Zea mays/química , Antocianinas/análise , Bebidas , Flavonas/análise , Pigmentos Biológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...