Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 288: 121721, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35981926

RESUMO

Current clinical products delivering the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) for bone regeneration have been plagued by safety concerns due to a high incidence of off-target effects resulting from bolus release and supraphysiological doses. Layer-by-layer (LbL) film deposition offers the opportunity to coat bone defect-relevant substrates with thin films containing proteins and other therapeutics; however, control of release kinetics is often hampered by interlayer diffusion of drugs throughout the film during assembly, which causes burst drug release. In this work, we present the design of different laponite clay diffusional barrier layer architectures in self-assembled LbL films to modulate the release kinetics of BMP-2 from the surface of a biodegradable implant. Release kinetics were tuned by incorporating laponite in different film arrangements and with varying deposition techniques to achieve release of BMP-2 over 2 days, 4 days, 14 days, and 30 days. Delivery of a low dose (0.5 µg) of BMP-2 over 2 days and 30 days using these LbL film architectures was then compared in an in vivo rat critical size calvarial defect model to determine the effect of BMP-2 release kinetics on bone regeneration. After 6 weeks, sustained release of BMP-2 over 30 days induced 3.7 times higher bone volume and 7.4 times higher bone mineral density as compared with 2-day release of BMP-2, which did not induce more bone growth than the uncoated scaffold control. These findings represent a crucial step in the understanding of how BMP-2 release kinetics influence treatment efficacy and underscore the necessity to optimize protein delivery methods in clinical formulations for bone regeneration. This work could be applied to the delivery of other therapeutic proteins for which careful tuning of the release rate is a key optimization parameter.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Animais , Proteína Morfogenética Óssea 2/farmacologia , Preparações de Ação Retardada/farmacologia , Osteogênese , Próteses e Implantes , Ratos
2.
Adv Healthc Mater ; 10(9): e2001941, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738985

RESUMO

Polyelectrolyte multilayer (PEM) coatings, constructed on the surfaces of tissue engineering scaffolds using layer-by-layer assembly (LbL), promote sustained release of therapeutic molecules and have enabled regeneration of large-scale, pre-clinical bone defects. However, these systems primarily rely on non-specific hydrolysis of PEM components to foster drug release, and their pre-determined drug delivery schedules potentially limit future translation into innately heterogeneous patient populations. To trigger therapeutic delivery directly in response to local environmental stimuli, an LbL-compatible polycation solely degraded by cell-generated reactive oxygen species (ROS) was synthesized. These thioketal-based polymers were selectively cleaved by physiologic doses of ROS, stably incorporated into PEM films alongside growth factors, and facilitated tunable release of therapeutic bone morphogenetic protein-2 (BMP-2) upon oxidation. These coatings' sensitivity to oxidation was also dependent on the polyanions used in film construction, providing a simple method for enhancing ROS-mediated protein delivery in vitro. Correspondingly, when implanted in critically-sized rat calvarial defects, the most sensitive ROS-responsive coatings generated a 50% increase in bone regeneration compared with less sensitive formulations and demonstrated a nearly threefold extension in BMP-2 delivery half-life over conventional hydrolytically-sensitive coatings. These combined results highlight the potential of environmentally-responsive PEM coatings as tunable drug delivery systems for regenerative medicine.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Animais , Liberação Controlada de Fármacos , Humanos , Polieletrólitos , Ratos , Engenharia Tecidual , Alicerces Teciduais
3.
ACS Nano ; 12(10): 10272-10280, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30272942

RESUMO

The utility of layer-by-layer (LbL) coated microneedle (MN) skin patches for transdermal drug delivery has proven to be a promising approach, with advantages over hypodermal injection due to painless and easy self-administration. However, the long epidermal application time required for drug implantation by existing LbL MN strategies (15-90 min) can lead to potential medication noncompliance. Here, we developed a MN platform to shorten the application time in MN therapies based on a synthetic pH-induced charge-invertible polymer poly(2-(diisopropylamino) ethyl methacrylate- b-methacrylic acid) (PDM), requiring only 1 min skin insertion time to implant LbL films in vivo. Following MN-mediated delivery of 0.5 µg model antigen chicken ovalbumin (OVA) in the skin of mice, this system achieved sustained release over 3 days and led to an elevated immune response as demonstrated by significantly higher humoral immunity compared with OVA administration via conventional routes (subcutaneously and intramuscularly). Moreover, in an ex vivo experiment on human skin, we achieved efficient immune activation through MN-delivered LbL films, demonstrated by a rapid uptake of vaccine adjuvants by the antigen presenting cells. These features, rapid administration and the ability to elicit a robust immune response, can potentially enable a broad application of microneedle-based vaccination technologies.


Assuntos
Adjuvantes Imunológicos/farmacologia , Agulhas , Oligodesoxirribonucleotídeos/farmacologia , Ácidos Polimetacrílicos/síntese química , Receptor de Morte Celular Programada 1/imunologia , Pele/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Administração Cutânea , Animais , Galinhas , Sistemas de Liberação de Medicamentos , Feminino , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ácidos Polimetacrílicos/química , Pele/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...