Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Br J Cancer ; 130(4): 682-693, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38177660

RESUMO

BACKGROUND: Resistance mechanisms to combination therapy with dabrafenib plus trametinib remain poorly understood in patients with BRAFV600E-mutant advanced non-small-cell lung cancer (NSCLC). We examined resistance to BRAF inhibition by single CTC sequencing in BRAFV600E-mutant NSCLC. METHODS: CTCs and cfDNA were examined in seven BRAFV600E-mutant NSCLC patients at failure to treatment. Matched tumour tissue was available for four patients. Single CTCs were isolated by fluorescence-activated cell sorting following enrichment and immunofluorescence (Hoechst 33342/CD45/pan-cytokeratins) and sequenced for mutation and copy number-alteration (CNA) analyses. RESULTS: BRAFV600E was found in 4/4 tumour biopsies and 5/7 cfDNA samples. CTC mutations were mostly found in MAPK-independent pathways and only 1/26 CTCs were BRAFV600E mutated. CTC profiles encompassed the majority of matched tumour biopsy CNAs but 72.5% to 84.5% of CTC CNAs were exclusive to CTCs. Extensive diversity, involving MAPK, MAPK-related, cell cycle, DNA repair and immune response pathways, was observed in CTCs and missed by analyses on tumour biopsies and cfDNA. Driver alterations in clinically relevant genes were recurrent in CTCs. CONCLUSIONS: Resistance was not driven by BRAFV600E-mutant CTCs. Extensive tumour genomic heterogeneity was found in CTCs compared to tumour biopsies and cfDNA at failure to BRAF inhibition, in BRAFV600E-mutant NSCLC, including relevant alterations that may represent potential treatment opportunities.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Células Neoplásicas Circulantes/patologia , Mutação
2.
JAMA Netw Open ; 6(7): e2325332, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37490292

RESUMO

Importance: Liquid biopsy has emerged as a complement to tumor tissue profiling for advanced non-small cell lung cancer (NSCLC). The optimal way to integrate liquid biopsy into the diagnostic algorithm for patients with newly diagnosed advanced NSCLC remains unclear. Objective: To evaluate the use of circulating tumor DNA (ctDNA) genotyping before tissue diagnosis among patients with suspected advanced NSCLC and its association with time to treatment. Design, Setting, and Participants: This single-group nonrandomized clinical trial was conducted among 150 patients at the Princess Margaret Cancer Centre-University Health Network (Toronto, Ontario, Canada) between July 1, 2021, and November 30, 2022. Patients referred for investigation and diagnosis of lung cancer were eligible if they had radiologic evidence of advanced lung cancer prior to a tissue diagnosis. Interventions: Patients underwent plasma ctDNA testing with a next-generation sequencing (NGS) assay before lung cancer diagnosis. Diagnostic biopsy and tissue NGS were performed per standard of care. Main Outcome and Measures: The primary end point was time from referral to treatment initiation among patients with advanced nonsquamous NSCLC using ctDNA testing before diagnosis (ACCELERATE [Accelerating Lung Cancer Diagnosis Through Liquid Biopsy] cohort). This cohort was compared with a reference cohort using standard tissue genotyping after tissue diagnosis. Results: Of the 150 patients (median age at diagnosis, 68 years [range, 33-91 years]; 80 men [53%]) enrolled, 90 (60%) had advanced nonsquamous NSCLC. The median time to treatment was 39 days (IQR, 27-52 days) for the ACCELERATE cohort vs 62 days (IQR, 44-82 days) for the reference cohort (P < .001). Among the ACCELERATE cohort, the median turnaround time from sample collection to genotyping results was 7 days (IQR, 6-9 days) for plasma and 23 days (IQR, 18-28 days) for tissue NGS (P < .001). Of the 90 patients with advanced nonsquamous NSCLC, 21 (23%) started targeted therapy before tissue NGS results were available, and 11 (12%) had actionable alterations identified only through plasma testing. Conclusions and Relevance: This nonrandomized clinical trial found that the use of plasma ctDNA genotyping before tissue diagnosis among patients with suspected advanced NSCLC was associated with accelerated time to treatment compared with a reference cohort undergoing standard tissue testing. Trial Registration: ClinicalTrials.gov Identifier: NCT04863924.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Tempo para o Tratamento , Ontário
3.
J Clin Oncol ; 40(22): 2408-2419, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658506

RESUMO

PURPOSE: To examine the prevalence and dynamics of circulating tumor DNA (ctDNA) and its association with metastatic recurrence in patients with high-risk early-stage hormone receptor-positive breast cancer (HR+ BC) more than 5 years from diagnosis. METHODS: We enrolled 103 patients with high-risk stage II-III HR+ BC diagnosed more than 5 years prior without clinical evidence of recurrence. We performed whole-exome sequencing (WES) on primary tumor tissue to identify somatic mutations tracked via a personalized, tumor-informed ctDNA test to detect minimal residual disease (MRD). We collected plasma at the time of consent and at routine visits every 6-12 months. Patients were followed for clinical recurrence. RESULTS: In total, 85 of 103 patients had sufficient tumor tissue; of them, 83 of 85 (97.6%) patients had successful whole-exome sequencing. Personalized ctDNA assays were designed targeting a median of 36 variants to test 219 plasma samples. The median time from diagnosis to first sample was 8.4 years. The median follow-up was 10.4 years from diagnosis and 2.0 years from first sample. The median number of plasma samples per patient was two. Eight patients (10%) had positive MRD testing at any time point. Six patients (7.2%) developed distant metastatic recurrence, all of whom were MRD-positive before overt clinical recurrence, with median ctDNA lead time of 12.4 months. MRD was not identified in one patient (1.2%) with local recurrence. Two of eight MRD-positive patients had not had clinical recurrence at last follow-up. CONCLUSION: In this prospective study, in patients with high-risk HR+ BC in the late adjuvant setting, ctDNA was identified a median of 1 year before all cases of distant metastasis. Future studies will determine if ctDNA-guided intervention in patients with HR+ BC can alter clinical outcomes.


Assuntos
DNA Tumoral Circulante , Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Humanos , Mutação , Recidiva Local de Neoplasia/patologia , Neoplasia Residual , Estudos Prospectivos , Receptor ErbB-2
4.
Front Oncol ; 12: 856132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419282

RESUMO

Introduction: Circulating tumor DNA (ctDNA) testing may identify patients at high risk for recurrence following chemoradiation (CRT) for locally advanced non-small cell lung cancer (LA-NSCLC). We evaluated the feasibility of ctDNA testing on a readily available commercial fixed-gene panel to predict outcomes in patients with LA-NSCLC. Methods: Plasma of 43 patients was collected at CRT initiation (pre-CRT), completion (post-CRT1), quarterly follow up for 12 months (post-CRT2, 3, 4, 5 respectively) after CRT, and at disease progression. ctDNA analysis was performed using InVisionFirst®-Lung to detect mutations in 36 cancer-related genes. ctDNA clearance was defined as absence of pre-CRT variants at post-CRT1. Patients without detectable pre-CRT variants or no post-CRT1 samples were excluded. Results: Twenty eight of 43 patients (65%) had detectable variants pre-CRT. Nineteen of 43 patients (44%) had detectable pre-CRT variants and post-CRT1 samples and were included in analysis. Median age at diagnosis was 65 years (43-82), and most patients had stage IIIB disease (10/19, 53%). Two patients died from non-cancer related causes before post-CRT2 and were excluded from further analysis. All three patients who did not clear ctDNA had tumor relapse with a median time to relapse of 74 days (30-238), while 50% (7/14) of those who cleared ctDNA have remained disease free. Progression free survival was longer in patients who cleared ctDNA compared to those who did not (median 567 vs 74 d, p = 0.01). Conclusions: Although it is feasible to use ctDNA testing on a limited gene panel to identify patients with LA-NSCLC who are at high risk for disease recurrence following CRT, further studies will be necessary to optimize these assays before they can be used to inform clinical care in patients with lung cancer.

5.
Br J Cancer ; 126(8): 1186-1195, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132238

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) remain a substantial burden to global health. Cell-free circulating tumour DNA (ctDNA) is an emerging biomarker but has not been studied sufficiently in HNSCC. METHODS: We conducted a single-centre prospective cohort study to investigate ctDNA in patients with p16-negative HNSCC who received curative-intent primary surgical treatment. Whole-exome sequencing was performed on formalin-fixed paraffin-embedded (FFPE) tumour tissue. We utilised RaDaRTM, a highly sensitive personalised assay using deep sequencing for tumour-specific variants, to analyse serial pre- and post-operative plasma samples for evidence of minimal residual disease and recurrence. RESULTS: In 17 patients analysed, personalised panels were designed to detect 34 to 52 somatic variants. Data show ctDNA detection in baseline samples taken prior to surgery in 17 of 17 patients. In post-surgery samples, ctDNA could be detected at levels as low as 0.0006% variant allele frequency. In all cases with clinical recurrence to date, ctDNA was detected prior to progression, with lead times ranging from 108 to 253 days. CONCLUSIONS: This study illustrates the potential of ctDNA as a biomarker for detecting minimal residual disease and recurrence in HNSCC and demonstrates the feasibility of personalised ctDNA assays for the detection of disease prior to clinical recurrence.


Assuntos
DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Biópsia Líquida , Neoplasia Residual/genética , Estudos Prospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia
6.
Breast Cancer Res Treat ; 188(2): 465-476, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34097174

RESUMO

PURPOSE: There is growing interest in the application of circulating tumour DNA (ctDNA) as a sensitive tool for monitoring tumour evolution and guiding targeted therapy in patients with cancer. However, robust comparisons of different platform technologies are still required. Here we compared the InVisionSeq™ ctDNA Assay with the Oncomine™ Breast cfDNA Assay to assess their concordance and feasibility for the detection of mutations in plasma at low (< 0.5%) variant allele fraction (VAF). METHODS: Ninety-six plasma samples from 50 patients with estrogen receptor (ER)-positive metastatic breast cancer (mBC) were profiled using the InVision Assay. Results were compared to the Oncomine assay in 30 samples from 26 patients, where there was sufficient material and variants were covered by both assays. Longitudinal samples were analysed for 8 patients with endocrine resistance. RESULTS: We detected alterations in 59/96 samples from 34/50 patients analysed with the InVision assay, most frequently affecting ESR1, PIK3CA and TP53. Complete or partial concordance was found in 28/30 samples analysed by both assays, and VAF values were highly correlated. Excellent concordance was found for most genes, and most discordant calls occurred at VAF < 1%. In longitudinal samples from progressing patients with endocrine resistance, we detected consistent alterations in sequential samples, most commonly in ESR1 and PIK3CA. CONCLUSION: This study shows that both ultra-deep next-generation sequencing (NGS) technologies can detect genomic alternations even at low VAFs in plasma samples of mBC patients. The strong agreement of the technologies indicates sufficient reproducibility for clinical use as prognosic and predictive biomarker.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , DNA Tumoral Circulante/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes
7.
Breast Cancer Res ; 23(1): 3, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413557

RESUMO

BACKGROUND: NRG1 gene fusions may be clinically actionable, since cancers carrying the fusion transcripts can be sensitive to tyrosine kinase inhibitors. The NRG1 gene encodes ligands for the HER2(ERBB2)-ERBB3 heterodimeric receptor tyrosine kinase, and the gene fusions are thought to lead to autocrine stimulation of the receptor. The NRG1 fusion expressed in the breast cancer cell line MDA-MB-175 serves as a model example of such fusions, showing the proposed autocrine loop and exceptional drug sensitivity. However, its structure has not been properly characterised, its oncogenic activity has not been fully explained, and there is limited data on such fusions in breast cancer. METHODS: We analysed genomic rearrangements and transcripts of NRG1 in MDA-MB-175 and a panel of 571 breast cancers. RESULTS: We found that the MDA-MB-175 fusion-originally reported as a DOC4(TENM4)-NRG1 fusion, lacking the cytoplasmic tail of NRG1-is in reality a double fusion, PPP6R3-TENM4-NRG1, producing multiple transcripts, some of which include the cytoplasmic tail. We hypothesise that many NRG1 fusions may be oncogenic not for lacking the cytoplasmic domain but because they do not encode NRG1's nuclear-localised form. The fusion in MDA-MB-175 is the result of a very complex genomic rearrangement, which we partially characterised, that creates additional expressed gene fusions, RSF1-TENM4, TPCN2-RSF1, and MRPL48-GAB2. We searched for NRG1 rearrangements in 571 breast cancers subjected to genome sequencing and transcriptome sequencing and found four cases (0.7%) with fusions, WRN-NRG1, FAM91A1-NRG1, ARHGEF39-NRG1, and ZNF704-NRG1, all splicing into NRG1 at the same exon as in MDA-MB-175. However, the WRN-NRG1 and ARHGEF39-NRG1 fusions were out of frame. We identified rearrangements of NRG1 in many more (8% of) cases that seemed more likely to inactivate than to create activating fusions, or whose outcome could not be predicted because they were complex, or both. This is not surprising because NRG1 can be pro-apoptotic and is inactivated in some breast cancers. CONCLUSIONS: Our results highlight the complexity of rearrangements of NRG1 in breast cancers and confirm that some do not activate but inactivate. Careful interpretation of NRG1 rearrangements will therefore be necessary for appropriate patient management.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neuregulina-1/genética , Proteínas de Fusão Oncogênica/genética , Processamento Alternativo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Loci Gênicos , Humanos , Neuregulina-1/química , Neuregulina-1/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais , Translocação Genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-32923908

RESUMO

PURPOSE: Liquid biopsy specimen genomic profiling is integrated in non-small-cell lung cancer (NSCLC) guidelines; however, data on the clinical relevance for ALK /ROS1 alterations are scarce. We evaluated the clinical utility of a targeted amplicon-based assay in a large prospective cohort of patients with ALK/ROS1-positive NSCLC and its impact on outcomes. PATIENTS AND METHODS: Patients with advanced ALK/ROS1-positive NSCLC were prospectively enrolled in the study by researchers at eight French institutions. Plasma samples were analyzed using InVisionFirst-Lung and correlated with clinical outcomes. RESULTS: Of the 128 patients included in the study, 101 were positive for ALK and 27 for ROS1 alterations. Blood samples (N = 405) were collected from 29 patients naïve for treatment with tyrosine kinase inhibitors (TKI) or from 375 patients under treatment, including 105 samples collected at disease progression (PD). Sensitivity was 67% (n = 18 of 27) for ALK/ROS1 fusion detection. Higher detection was observed for ALK fusions at TKI failure (n = 33 of 74; 46%) versus in patients with therapeutic response (n = 12 of 109; 11%). ALK-resistance mutations were detected in 22% patients (n = 16 of 74) overall; 43% of the total ALK-resistance mutations identified occurred after next-generation TKI therapy. ALK G1202R was the most common mutation detected (n = 7 of 16). Heterogeneity of resistance was observed. ROS1 G2032R resistance was detected in 30% (n = 3 of 10). The absence of circulating tumor DNA mutations at TKI failure was associated with prolonged median overall survival (105.7 months). Complex ALK-resistance mutations correlated with poor overall survival (median, 26.9 months v NR for single mutation; P = .003) and progression-free survival to subsequent therapy (median 1.7 v 6.3 months; P = .003). CONCLUSION: Next-generation, targeted, amplicon-based sequencing for liquid biopsy specimen profiling provides clinically relevant detection of ALK/ROS1 fusions in TKI-naïve patients and allows for the identification of resistance mutations in patients treated with TKIs. Liquid biopsy specimens from patients treated with TKIs may affect clinical outcomes and capture heterogeneity of TKI resistance, supporting their role in selecting sequential therapy.

9.
Clin Cancer Res ; 26(23): 6242-6253, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32859654

RESUMO

PURPOSE: The limited knowledge on the molecular profile of patients with BRAF-mutant non-small cell lung cancer (NSCLC) who progress under BRAF-targeted therapies (BRAF-TT) has hampered the development of subsequent therapeutic strategies for these patients. Here, we evaluated the clinical utility of circulating tumor DNA (ctDNA)-targeted sequencing to identify canonical BRAF mutations and genomic alterations potentially related to resistance to BRAF-TT, in a large cohort of patients with BRAF-mutant NSCLC. EXPERIMENTAL DESIGN: This was a prospective study of 78 patients with advanced BRAF-mutant NSCLC, enrolled in 27 centers across France. Blood samples (n = 208) were collected from BRAF-TT-naïve patients (n = 47), patients nonprogressive under treatment (n = 115), or patients at disease progression (PD) to BRAF-TT (24/46 on BRAF monotherapy and 22/46 on BRAF/MEK combination therapy). ctDNA sequencing was performed using InVisionFirst-Lung. In silico structural modeling was used to predict the potential functional effect of the alterations found in ctDNA. RESULTS: BRAFV600E ctDNA was detected in 74% of BRAF-TT-naïve patients, where alterations in genes related with the MAPK and PI3K pathways, signal transducers, and protein kinases were identified in 29% of the samples. ctDNA positivity at the first radiographic evaluation under treatment, as well as BRAF-mutant ctDNA positivity at PD were associated with poor survival. Potential drivers of resistance to either BRAF-TT monotherapy or BRAF/MEK combination were identified in 46% of patients and these included activating mutations in effectors of the MAPK and PI3K pathways, as well as alterations in U2AF1, IDH1, and CTNNB1. CONCLUSIONS: ctDNA sequencing is clinically relevant for the detection of BRAF-activating mutations and the identification of alterations potentially related to resistance to BRAF-TT in BRAF-mutant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , DNA Tumoral Circulante/genética , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular/métodos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , DNA Tumoral Circulante/análise , Seguimentos , Genômica/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida
10.
PLoS One ; 15(6): e0234302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32525942

RESUMO

Circulating tumor DNA (ctDNA)-based molecular profiling is rapidly gaining traction in clinical practice of advanced cancer patients with multi-gene next-generation sequencing (NGS) panels. However, clinical outcomes remain poorly described and deserve further validation with personalized treatment of patients with genomic alterations detected in plasma ctDNA. Here, we describe the outcomes, disease control rate (DCR) at 3 months and progression-free survival (PFS) in oncogenic-addicted advanced NSCLC patients with actionable alterations identified in plasma by ctDNA liquid biopsy assay, InVisionFirst®-Lung. A pooled retrospective analysis was completed of 81 advanced NSCLC patients with all classes of alterations predicting response to current FDA approved drugs: sensitizing common EGFR mutations (78%, n = 63) with T790M (73%, 46/63), ALK / ROS1 gene fusions (17%, n = 14) and BRAF V600E mutations (5%, n = 4). Actionable driver alterations detected in liquid biopsy were confirmed by prior tissue genomic profiling in all patients, and all patients received personalized treatment. Of 82 patients treated with matched targeted therapies, 10% were at first-line, 41% at second-line, and 49% beyond second-line. Acquired T790M at TKI relapse was detected in 73% (46/63) of patients, and all prospective patients (34/46) initiated osimertinib treatment based on ctDNA results. The 3-month DCR was 86% in 81 evaluable patients. The median PFS was of 14.8 months (12.1-22.9m). Baseline ctDNA allelic fraction of genomic driver did not correlate with the response rate of personalized treatment (p = 0.29). ctDNA molecular profiling is an accurate and reliable tool for the detection of clinically relevant molecular alterations in advanced NSCLC patients. Clinical outcomes with targeted therapies endorse the use of liquid biopsy by amplicon-based NGS ctDNA analysis in first line and relapse testing for advanced NSCLC patients.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/genética , Mutação , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Viabilidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Biópsia Líquida , Neoplasias Pulmonares/patologia , Masculino , Estadiamento de Neoplasias
11.
Eur J Cancer ; 132: 211-223, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32388065

RESUMO

INTRODUCTION: BRAF is a confirmed therapeutic target in non-small cell lung cancer (NSCLC), as the BRAF inhibitor dabrafenib, in combination with the MEK inhibitor trametinib, is approved for the treatment of NSCLC harbouring BRAF V600E mutation. Scant evidence is available concerning the mechanisms of resistance to BRAF/MEK inhibitors in BRAFV600E NSCLC. PATIENTS AND METHODS: Patients with BRAFV600E NSCLC with acquired resistance to BRAF/MEK inhibitors were included in the institutional, prospective MATCH-R (from "Matching Resistance") trial and underwent tumour and liquid biopsies at the moment of radiological progression. Extensive molecular analyses were performed, including targeted next-generation sequencing (NGS), whole-exome sequencing (WES), RNA sequencing and comparative genomic hybridisation (CGH) array. RESULTS: Of the 11 patients included, eight had progressed on dabrafenib-trametinib combination, two on dabrafenib monotherapy and one on vemurafenib (BRAF inhibitor). Complete molecular analyses were available for seven patients, whereas an additional case had only targeted NGS and CGH array data. Among these eight patients, acquired molecular events potentially responsible for resistance were detected in three who progressed on dabrafenib-trametinib combination, that is, MEK1 K57N, RAS viral (v-ras) oncogene homolog (NRAS) Q61R and rat sarcoma viral oncogene homolog (KRAS) Q61R mutations. One patient progressing on dabrafenib monotherapy developed a PTEN frameshift mutation. No molecular hints addressing resistance emerged in the remaining four patients with analyses performed. Tumour mutational burden, evaluated by WES in seven patients, was low (median = 2.06 mutations/megabase, range = 1.57-3.75 mut/Mb). CONCLUSIONS: Novel resistance mechanisms to BRAF/MEK inhibitors in BRAFV600E NSCLC were identified, pointing out the recurring involvement of the MAPK pathway and guiding the development of new treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
12.
Clin Cancer Res ; 26(1): 242-255, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585938

RESUMO

PURPOSE: Lorlatinib is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor with proven efficacy in patients with ALK-rearranged lung cancer previously treated with first- and second-generation ALK inhibitors. Beside compound mutations in the ALK kinase domain, other resistance mechanisms driving lorlatinib resistance remain unknown. We aimed to characterize the mechanisms of resistance to lorlatinib occurring in patients with ALK-rearranged lung cancer and design new therapeutic strategies in this setting. EXPERIMENTAL DESIGN: Resistance mechanisms were investigated in 5 patients resistant to lorlatinib. Longitudinal tumor biopsies were studied using high-throughput next-generation sequencing. Patient-derived models were developed to characterize the acquired resistance mechanisms, and Ba/F3 cell mutants were generated to study the effect of novel ALK compound mutations. Drug combinatory strategies were evaluated in vitro and in vivo to overcome lorlatinib resistance. RESULTS: Diverse biological mechanisms leading to lorlatinib resistance were identified. Epithelial-mesenchymal transition (EMT) mediated resistance in two patient-derived cell lines and was susceptible to dual SRC and ALK inhibition. We characterized three ALK kinase domain compound mutations occurring in patients, L1196M/D1203N, F1174L/G1202R, and C1156Y/G1269A, with differential susceptibility to ALK inhibition by lorlatinib. We identified a novel bypass mechanism of resistance caused by NF2 loss-of-function mutations, conferring sensitivity to treatment with mTOR inhibitors. CONCLUSIONS: This study shows that mechanisms of resistance to lorlatinib are diverse and complex, requiring new therapeutic strategies to tailor treatment upon disease progression.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Adulto , Aminopiridinas , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Rearranjo Gênico , Humanos , Lactamas , Lactamas Macrocíclicas/uso terapêutico , Estudos Longitudinais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mutação , Neurofibromina 2/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Thorac Oncol ; 15(3): 383-391, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31843682

RESUMO

INTRODUCTION: In patients with oncogene-addicted NSCLC and isolated central nervous system progression (iCNS), tissue biopsy is challenging, and the clinical utility of plasma liquid biopsy (i.e., circulating tumor DNA [ctDNA]) is unknown. METHODS: Patients with advanced NSCLC with known baseline genomic alteration (GA) (EGFR, ALK, BRAF, KRAS, HER2, ROS1, MET, PIK3CA, STK11, TP53) on tissue were divided into three groups on the basis of their disease progression pattern: iCNS, extra-CNS only (noCNS), or both (cCNS). All patients with available plasma ctDNA were included and were analyzed by next-generation sequencing InVisionFirst-Lung. ctDNA was considered positive if at least one GA was detected. Cell-free tumor DNA was analyzed in cerebrospinal fluid when available. RESULTS: Out of 517 patients screened, 247 were included: 54 had iCNS, 99 had noCNS, and 94 had cCNS progressive disease (64, 128, and 110 ctDNA samples, respectively). CtDNA was positive in 52% iCNS versus 84% in noCNS and 92% in cCNS (p < 0.00001), with lower detection of driver (37% versus 77% and 73%, respectively) and resistance alterations (6% versus 45% and 44%). Patients with iCNS and positive ctDNA were more at risk of extra-CNS progression (32% versus 7%, p = 0.026). In 12 patients with iCNS, ctDNA was positive in six (50%) plasma and in 10 (83%) paired cerebrospinal fluid (p = 0.193). CONCLUSIONS: Although tagged amplicon-based next-generation sequencing has high detection rates of GA in plasma ctDNA in patients with NSCLC with extra-CNS disease, detection rate of GAs (52%) is lower in the subset of patients with iCNS disease. Complementary tests such as cerebrospinal fluid cell-free DNA may be useful. Further evidence would be beneficial to understand the genomic landscape in patients with NSCLC and iCNS.


Assuntos
DNA Tumoral Circulante , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Sistema Nervoso Central , DNA Tumoral Circulante/genética , Progressão da Doença , Humanos , Neoplasias Pulmonares/genética , Mutação , Oncogenes , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas
14.
Nat Commun ; 10(1): 2030, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048689

RESUMO

Acquired resistance to MEK1/2 inhibitors (MEKi) arises through amplification of BRAFV600E or KRASG13D to reinstate ERK1/2 signalling. Here we show that BRAFV600E amplification and MEKi resistance are reversible following drug withdrawal. Cells with BRAFV600E amplification are addicted to MEKi to maintain a precise level of ERK1/2 signalling that is optimal for cell proliferation and survival, and tumour growth in vivo. Robust ERK1/2 activation following MEKi withdrawal drives a p57KIP2-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death, selecting against those cells with amplified BRAFV600E. p57KIP2 expression is required for loss of BRAFV600E amplification and reversal of MEKi resistance. Thus, BRAFV600E amplification confers a selective disadvantage during drug withdrawal, validating intermittent dosing to forestall resistance. In contrast, resistance driven by KRASG13D amplification is not reversible; rather ERK1/2 hyperactivation drives ZEB1-dependent epithelial-to-mesenchymal transition and chemoresistance, arguing strongly against the use of drug holidays in cases of KRASG13D amplification.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Amplificação de Genes/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias/genética , Inibidores de Proteínas Quinases/uso terapêutico , Suspensão de Tratamento , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32914037

RESUMO

PURPOSE: To assess the feasibility and utility of circulating tumor DNA (ctDNA) by amplicon-based next-generation sequencing (NGS) analysis in the daily clinical setting in a cohort of patients with advanced non-small-cell lung cancer (NSCLC), as an alternative approach to tissue molecular profiling. PATIENTS AND METHODS: In this single-center prospective study, treatment-naïve and previously treated patients with advanced NSCLC were enrolled. Clinical validation of ctDNA using amplicon-based NGS analysis (with a 36-gene panel) was performed against standard-of-care tissue molecular analysis in treatment-naïve patients. The feasibility, utility, and prognostic value of ctDNA as a dynamic marker of treatment efficacy was evaluated. Results of tissue molecular profile were blinded during ctDNA analysis. RESULTS: Of 214 patients with advanced NSCLC who were recruited, 156 were treatment-naïve patients and 58 were pretreated patients with unknown tissue molecular profile. ctDNA screening was successfully performed for 91% (n = 194) of all patients, and mutations were detected in 77% of these patients. Tissue molecular analysis was available for 111 patients (52%), and tissue somatic mutations were found for 78% (n = 87) of patients. For clinically relevant variants, concordance agreement between ctDNA and tumor tissue analysis was 95% among 94 treatment-naïve patients who had concurrent liquid and tumor biopsy molecular profiles. Sensitivity and specificity were 81% and 97%, respectively. Of the 103 patients with no tissue available, ctDNA detected potential actionable mutations in 17% of patients; of these, 10% received personalized treatment. ctDNA kinetics correlated with response rate and progression-free survival in 31 patients treated with first-line platinum-based chemotherapy. CONCLUSION: These real-world data from a prospective study endorse ctDNA molecular profile by amplicon-based NGS as an accurate and reliable tool to detect and monitor clinically relevant molecular alterations in patients with advanced NSCLC.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32914040

RESUMO

PURPOSE: Guidelines advocate molecular profiling in the evaluation of advanced non-small-cell lung cancer (NSCLC) and support the use of plasma circulating tumor DNA (ctDNA)-based profiling for patients with insufficient tissue. Thorough prospective clinical validation studies of next-generation sequencing (NGS)-based ctDNA assays are lacking. We report the multicentered prospective clinical validation of the InVision ctDNA assay in patients with advanced untreated NSCLC. METHODS: A total of 264 patients with untreated advanced NSCLC were prospectively recruited, and their plasma was analyzed using a ctDNA NGS assay for detection of genomic alterations in 36 commonly mutated genes. Tumor tissue was available in 178 patients for molecular profiling for comparison with plasma profiling. The remaining 86 patients were included to compare ctDNA profiles in patients with and without tissue for profiling. RESULTS: Concordance of InVisionFirst with matched tissue profiling was 97.8%, with 82.9% positive predictive value, 98.5% negative predictive value, 70.6% sensitivity, and 99.2% specificity. Considering specific alterations in eight genes that most influence patient management, the positive predictive value was 97.8%, with 97.1% negative predictive value, 73.9% sensitivity, and 99.8% specificity. Across the entire study, 48 patients with actionable alterations were identified by ctDNA testing compared with only 38 by tissue testing. ctDNA NGS reported either an actionable alteration or an alteration generally considered mutually exclusive for such actionable changes in 53% of patients. CONCLUSION: The liquid biopsy NGS assay demonstrated excellent concordance with tissue profiling in this multicenter, prospective, clinical validation study, with sensitivity and specificity equivalent to Food and Drug Administration-approved single-gene ctDNA assays. The use of plasma-based molecular profiling using NGS led to the detection of 26% more actionable alterations compared with standard-of-care tissue testing in this study.

17.
PLoS One ; 13(3): e0193802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543828

RESUMO

Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications.


Assuntos
Biópsia Líquida/métodos , Análise de Sequência de DNA/métodos , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/sangue , Estudos de Coortes , Humanos , Mutação , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
PLoS One ; 13(3): e0194630, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29547634

RESUMO

INTRODUCTION: Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic, prognostic and predictive tool in cancer patient care. A growing number of gene targets have been identified as diagnostic or actionable, requiring the development of reliable technology that provides analysis of multiple genes in parallel. We have developed the InVision™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™) technology, an amplicon-based next generation sequencing method for the identification of clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 cancer-related genes. MATERIALS AND METHODS: We present analytical validation of the eTAm-Seq technology across two laboratories to determine the reproducibility of mutation identification. We assess the quantitative performance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-relevant genes as compared to digital PCR (dPCR), using both established DNA standards and novel full-process control material. RESULTS: The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of 99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations detected for samples with lower amounts of input DNA. CONCLUSIONS: These studies demonstrate that eTAm-Seq technology is a robust and reproducible technology for the identification and quantification of somatic mutations in circulating tumor DNA, and support its use in clinical applications for precision medicine.


Assuntos
Biomarcadores Tumorais/análise , Ácidos Nucleicos Livres/análise , Análise Mutacional de DNA/métodos , Mutação , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/patologia , Adulto , Alelos , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/análise , DNA de Neoplasias/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Biópsia Líquida/métodos , Masculino , Células Neoplásicas Circulantes/química , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Cancer Res ; 75(1): 194-202, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25406193

RESUMO

Glioblastoma, the most common and aggressive adult brain tumor, is characterized by extreme phenotypic diversity and treatment failure. Through fluorescence-guided resection, we identified fluorescent tissue in the sub-ependymal zone (SEZ) of patients with glioblastoma. Histologic analysis and genomic characterization revealed that the SEZ harbors malignant cells with tumor-initiating capacity, analogous to cells isolated from the fluorescent tumor mass (T). We observed resistance to supramaximal chemotherapy doses along with differential patterns of drug response between T and SEZ in the same tumor. Our results reveal novel insights into glioblastoma growth dynamics, with implications for understanding and limiting treatment resistance.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Epêndima/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos
20.
J Cell Sci ; 127(Pt 4): 788-800, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24363449

RESUMO

The mechanistic target of rapamycin (mTOR) protein kinase coordinates responses to nutrients and growth factors and is an anti-cancer drug target. To anticipate how cells will respond and adapt to chronic mTOR complex (mTORC)1 and mTORC2 inhibition, we have generated SW620 colon cancer cells with acquired resistance to the ATP-competitive mTOR kinase inhibitor AZD8055 (SW620:8055R). AZD8055 inhibited mTORC1 and mTORC2 signalling and caused a switch from cap-dependent to internal ribosome entry site (IRES)-dependent translation in parental SW620 cells. In contrast, SW620:8055R cells exhibited a loss of S6K signalling, an increase in expression of the eukaryotic translation initiation factor eIF4E and increased cap-dependent mRNA translation. As a result, the expression of CCND1 and MCL1, proteins encoded by eIF4E-sensitive and cap-dependent transcripts, was refractory to AZD8055 in SW620:8055R cells. RNAi-mediated knockdown of eIF4E reversed acquired resistance to AZD8055 in SW620:8055R cells; furthermore, increased expression of eIF4E was sufficient to reduce sensitivity to AZD8055 in a heterologous cell system. Finally, although the combination of MEK1/2 inhibitors with mTOR inhibitors is an attractive rational drug combination, SW620:8055R cells were actually cross-resistant to the MEK1/2 inhibitor selumetinib (AZD6244). These results exemplify the convergence of ERK1/2 and mTOR signalling at eIF4E, and the key role of eIF4E downstream of mTOR in maintaining cell proliferation. They also have important implications for therapeutic strategies based around mTOR and the MEK1/2-ERK1/2 pathway.


Assuntos
Antineoplásicos/farmacologia , Fator de Iniciação 4E em Eucariotos/genética , Morfolinas/farmacologia , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzimidazóis/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fator de Iniciação 4E em Eucariotos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Amplificação de Genes , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...