Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant J ; 107(6): 1837-1853, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216161

RESUMO

Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development, and stress responses. Many components of the BR pathway have previously been identified and characterized. However, BR phenotyping experiments are typically performed in a low-throughput manner, such as on Petri plates. Additionally, the BR pathway affects drought responses, but drought experiments are time consuming and difficult to control. To mitigate these issues and increase throughput, we developed the Robotic Assay for Drought (RoAD) system to perform BR and drought response experiments in soil-grown Arabidopsis plants. RoAD is equipped with a robotic arm, a rover, a bench scale, a precisely controlled watering system, an RGB camera, and a laser profilometer. It performs daily weighing, watering, and imaging tasks and is capable of administering BR response assays by watering plants with Propiconazole (PCZ), a BR biosynthesis inhibitor. We developed image processing algorithms for both plant segmentation and phenotypic trait extraction to accurately measure traits including plant area, plant volume, leaf length, and leaf width. We then applied machine learning algorithms that utilize the extracted phenotypic parameters to identify image-derived traits that can distinguish control, drought-treated, and PCZ-treated plants. We carried out PCZ and drought experiments on a set of BR mutants and Arabidopsis accessions with altered BR responses. Finally, we extended the RoAD assays to perform BR response assays using PCZ in Zea mays (maize) plants. This study establishes an automated and non-invasive robotic imaging system as a tool to accurately measure morphological and growth-related traits of Arabidopsis and maize plants in 3D, providing insights into the BR-mediated control of plant growth and stress responses.


Assuntos
Arabidopsis/fisiologia , Brassinosteroides/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Robótica/métodos , Zea mays/fisiologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Secas , Desenho de Equipamento , Aprendizado de Máquina , Fenótipo , Proteínas Quinases/genética , Robótica/instrumentação , Plântula/fisiologia , Solo/química , Triazóis/farmacologia
3.
Plant Cell Environ ; 44(8): 2625-2635, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33840122

RESUMO

The unfolded protein response (UPR) in plants is elicited by endoplasmic reticulum stress, which can be brought about by adverse environmental conditions. The response is mediated by a conserved signalling network composed of two branches - one branch involving inositol requiring enzyme1- basic leucine zipper60 (IRE1-bZIP60) signalling pathway and another branch involving the membrane transcription factors, bZIP17 and -28. The UPR has been reported in Chlamydomonas reinhardtii, a unicellular green alga, which lacks some canonical UPR signalling components found in vascular plants, raising the question whether C. reinhardtii uses other means such as oxidative signalling or Regulated IRE1-Dependent Decay to activate the UPR. In vascular plants, IRE1 splices bZIP60 mRNA in response to endoplasmic reticulum stress by cutting at a site in the RNA that is highly conserved in structure and sequence. Monocots have a single IRE1 gene required for viability in rice, while dicots have two IRE1 genes, IRE1a and -b. Brassicas have a third IRE1 gene, IRE1c, which lacks a lumenal domain, but is required in combination with IRE1b for gametogenesis. Vascular and non-vascular plants upregulate a similar set of genes in response to endoplasmic reticulum stress despite differences in the complexity of their UPR signalling networks.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Chlamydomonas reinhardtii/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
4.
Plant Physiol ; 186(2): 1318-1335, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33705553

RESUMO

Elevated temperatures enhance alternative RNA splicing in maize (Zea mays) with the potential to expand the repertoire of plant responses to heat stress. Alternative RNA splicing generates multiple RNA isoforms for many maize genes, and here we observed changes in the pattern of RNA isoforms with temperature changes. Increases in maximum daily temperature elevated the frequency of the major modes of alternative splices (AS), in particular retained introns and skipped exons. The genes most frequently targeted by increased AS with temperature encode factors involved in RNA processing and plant development. Genes encoding regulators of alternative RNA splicing were themselves among the principal AS targets in maize. Under controlled environmental conditions, daily changes in temperature comparable to field conditions altered the abundance of different RNA isoforms, including the RNAs encoding the splicing regulator SR45a, a member of the SR45 gene family. We established an "in protoplast" RNA splicing assay to show that during the afternoon on simulated hot summer days, SR45a RNA isoforms were produced with the potential to encode proteins efficient in splicing model substrates. With the RNA splicing assay, we also defined the exonic splicing enhancers that the splicing-efficient SR45a forms utilize to aid in the splicing of model substrates. Hence, with rising temperatures on hot summer days, SR45a RNA isoforms in maize are produced with the capability to encode proteins with greater RNA splicing potential.


Assuntos
Processamento Alternativo , Proteínas de Plantas/metabolismo , Isoformas de RNA , Zea mays/genética , Éxons/genética , Resposta ao Choque Térmico , Íntrons/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Temperatura , Zea mays/fisiologia
5.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477941

RESUMO

High temperatures causing heat stress disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress, often in combination with other stresses. Plants have evolved a variety of responses to heat stress to minimize damage and to protect themselves from further stress. A narrow temperature window separates growth from heat stress, and the range of temperatures conferring optimal growth often overlap with those producing heat stress. Heat stress induces a cytoplasmic heat stress response (HSR) in which heat shock transcription factors (HSFs) activate a constellation of genes encoding heat shock proteins (HSPs). Heat stress also induces the endoplasmic reticulum (ER)-localized unfolded protein response (UPR), which activates transcription factors that upregulate a different family of stress response genes. Heat stress also activates hormone responses and alternative RNA splicing, all of which may contribute to thermotolerance. Heat stress is often studied by subjecting plants to step increases in temperatures; however, more recent studies have demonstrated that heat shock responses occur under simulated field conditions in which temperatures are slowly ramped up to more moderate temperatures. Heat stress responses, assessed at a molecular level, could be used as traits for plant breeders to select for thermotolerance.


Assuntos
Resposta ao Choque Térmico/genética , Termotolerância/genética , Ativação Transcricional/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Resposta a Proteínas não Dobradas/genética , Zea mays/fisiologia
6.
Plant Sci ; 303: 110758, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487343

RESUMO

IRE1 is a key factor in the Unfolded Protein Response (UPR) in plants. IRE1 is a single-pass transmembrane protein that has a lumenal domain (LD) and cytoplasmic domain (CD), which perform quite different tasks on different sides of the ER membrane. The LD recognizes the presence of misfolded proteins in the ER lumen. The LDs of IRE1 in different plant species are predicted to fold into ß-propeller structures with surfaces for protein-protein interactions. Likewise, the CDs of plant IRE1s have predicted structural interfaces that promote the face-to-face arrangements of IRE1 for transphosphorylation and back-to-back arrangements for RNA splicing. Hence, the structures on the different faces of plant IRE1s have unique features for recognizing problems of protein folding in the ER and transducing that signal to activate the UPR.


Assuntos
Proteínas de Membrana/fisiologia , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/fisiologia , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Estrutura Terciária de Proteína , Estresse Fisiológico , Resposta a Proteínas não Dobradas/fisiologia
7.
Plant Cell ; 32(11): 3559-3575, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843434

RESUMO

The unfolded protein response (UPR) and the heat shock response (HSR) are two evolutionarily conserved systems that protect plants from heat stress. The UPR and HSR occur in different cellular compartments and both responses are elicited by misfolded proteins that accumulate under adverse environmental conditions such as heat stress. While the UPR and HSR appear to operate independently, we have found a link between them in maize (Zea mays) involving the production of the BASIC LEUCINE ZIPPER60 (bZIP60) transcription factor, a pivotal response of the UPR to heat stress. Surprisingly, a mutant (bzip60-2) knocking down bZIP60 expression blunted the HSR at elevated temperatures and prevented the normal upregulation of a group of heat shock protein genes in response to elevated temperature. The expression of a key HEAT SHOCK FACTOR TRANSCRIPTION FACTOR13 (HSFTF13, a HEAT SHOCK FACTOR A6B [HSFA6B] family member) was compromised in bzip60-2, and the HSFTF13 promoter was shown to be a target of bZIP60 in maize protoplasts. In addition, the upregulation by heat of genes involved in chlorophyll catabolism and chloroplast protein turnover were subdued in bzip60-2, and these genes were also found to be targets of bZIP60. Thus, the UPR, an endoplasmic-reticulum-associated response, quite unexpectedly contributes to the nuclear/cytoplasmic HSR in maize.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/genética , Resposta a Proteínas não Dobradas/fisiologia , Zea mays/fisiologia , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Proteínas de Plantas/metabolismo , Splicing de RNA , Resposta a Proteínas não Dobradas/genética , Zea mays/crescimento & desenvolvimento
8.
Plant Direct ; 4(7): e00241, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32743235

RESUMO

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) defines a condition called ER stress that induces the unfolded protein response (UPR). The UPR in mammalian cells attenuates protein synthesis initiation, which prevents the piling up of misfolded proteins in the ER. Mammalian cells rely on Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK) phosphorylation of eIF2α to arrest protein synthesis, however, plants do not have a PERK homolog, so the question is whether plants control translation in response to ER stress. We compared changes in RNA levels in the transcriptome to the RNA levels protected by ribosomes and found a decline in translation efficiency, including many UPR genes, in response to ER stress. The decline in translation efficiency is due to the fact that many mRNAs are not loaded onto polyribosomes (polysomes) in proportion to their increase in total RNA, instead some of the transcripts accumulate in stress granules (SGs). The RNAs that populate SGs are not derived from the disassembly of polysomes because protein synthesis remains steady during stress. Thus, the surge in transcription of UPR genes in response to ER stress is accompanied by the formation of SGs, and the sequestration of mRNAs in SGs may serve to temporarily relieve the translation load during ER stress.

9.
Plant Methods ; 15: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660060

RESUMO

BACKGROUND: Assessing the impact of the environment on plant performance requires growing plants under controlled environmental conditions. Plant phenotypes are a product of genotype × environment (G × E), and the Enviratron at Iowa State University is a facility for testing under controlled conditions the effects of the environment on plant growth and development. Crop plants (including maize) can be grown to maturity in the Enviratron, and the performance of plants under different environmental conditions can be monitored 24 h per day, 7 days per week throughout the growth cycle. RESULTS: The Enviratron is an array of custom-designed plant growth chambers that simulate different environmental conditions coupled with precise sensor-based phenotypic measurements carried out by a robotic rover. The rover has workflow instructions to periodically visit plants growing in the different chambers where it measures various growth and physiological parameters. The rover consists of an unmanned ground vehicle, an industrial robotic arm and an array of sensors including RGB, visible and near infrared (VNIR) hyperspectral, thermal, and time-of-flight (ToF) cameras, laser profilometer and pulse-amplitude modulated (PAM) fluorometer. The sensors are autonomously positioned for detecting leaves in the plant canopy, collecting various physiological measurements based on computer vision algorithms and planning motion via "eye-in-hand" movement control of the robotic arm. In particular, the automated leaf probing function that allows the precise placement of sensor probes on leaf surfaces presents a unique advantage of the Enviratron system over other types of plant phenotyping systems. CONCLUSIONS: The Enviratron offers a new level of control over plant growth parameters and optimizes positioning and timing of sensor-based phenotypic measurements. Plant phenotypes in the Enviratron are measured in situ-in that the rover takes sensors to the plants rather than moving plants to the sensors.

10.
Plant Physiol ; 179(4): 1834-1843, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710050

RESUMO

The unfolded protein response (UPR) is activated in plants in response to endoplasmic reticulum stress and plays an important role in mitigating stress damage. Multiple factors act in the UPR, including the membrane-associated transcription factor, BASIC LEUCINE ZIPPER 17 (bZIP17), and the membrane-associated RNA splicing factor, INOSITOL REQUIRING ENZYME1 (IRE1). We have analyzed an Arabidopsis (Arabidopsis thaliana) ire1a ire1b bzip17 triple mutant, with defects in stress signaling, and found that the mutant is also impaired in vegetative plant growth under conditions without externally applied stress. This raised the possibility that the UPR functions in plant development in the same manner as it does in responding to stress. bZIP17 is mobilized to the nucleus in response to stress, and through the analysis of a mobilization-defective bZIP17 mutant, we found that to support normal plant development bZIP17 must be capable of mobilization. Likewise, through the analysis of ire1 mutants defective in either protein kinase or RNase activities, we found that both must be operative to promote normal development. These findings demonstrate that the UPR, which is associated with stress responses in plants, also functions under unstressed conditions to support normal development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Estresse do Retículo Endoplasmático , Dobramento de Proteína , Arabidopsis/metabolismo , Splicing de RNA , Análise de Sequência de RNA , Transdução de Sinais
11.
Front Plant Sci ; 9: 833, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008724

RESUMO

Adverse environmental conditions such as heat and salt stress create endoplasmic reticulum (ER) stress in maize and set off the unfolded protein response (UPR). A key feature of the UPR is the upregulation of ZmbZIP60 and the splicing of its messenger RNA. We conducted an association analysis of a recombinant inbred line (RIL) derived from a cross of a tropical founder line, CML52 with a standard temperate line, B73. We found a major QTL conditioning heat-induced ZmbZIP60 expression located cis to the gene. Based on the premise that the QTL might be associated with the ZmbZIP60 promoter, we evaluated various maize inbred lines for their ability to upregulate the expression of ZmbZIP60 in response to heat stress. In general, tropical lines with promoter regions similar to CML52 were more robust in upregulating ZmbZIP60 in response to heat stress. This finding was confirmed by comparing the strength of the B73 and CML52 ZmbZIP60 promoters in transient maize protoplast assays. We concluded that the upstream region of ZmbZIP60 is important in conditioning the response to heat stress and was under selection in maize when adapted to different environments. Summary: Heat stress has large negative effects on maize grain yield. Heat stress creates ER stress in maize and sets off the UPR. We searched for factors conditioning heat induction of the UPR in maize seedlings by conducting an association analysis based on the upregulation of unspliced and spliced forms of ZmbZIP60 mRNA (ZmbZIP60u and ZmbZIP60s, respectively). ZmbZIP60u was upregulated more robustly by heat stress in the tropical maize line, CML52, than in B73, and a major QTL derived from the analysis of RILs from a cross of these two lines mapped in the vicinity of ZmbZIP60. We conducted a cis/trans test to determine whether the QTL was acting as a cis regulatory element or in trans, as might be expected for a transcription factor. We found that the QTL was acting in cis, likely involving the ZmbZIP60 promoter. ZmbZIP60 promoters in other temperate and tropical lines similar to CML52 showed enhanced expression of ZmbZIP60u by heat. The contribution of the CML52 promoter to heat induction of ZmbZIP60 was confirmed by analyzing the CML52 and B73 promoters linked to a luciferase reporter and assayed in heat-treated maize protoplasts.

12.
Autophagy ; 14(9): 1562-1573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940799

RESUMO

Macroautophagy/autophagy is a conserved process in eukaryotes that contributes to cell survival in response to stress. Previously, we found that endoplasmic reticulum (ER) stress induces autophagy in plants via a pathway dependent upon AT5G24360/IRE1B (INOSITOL REQUIRING 1-1), an ER membrane-anchored factor involved in the splicing of AT1G42990/BZIP60 (basic leucine zipper protein 60) mRNA. IRE1B is a dual protein kinase and ribonuclease, and here we determined the involvement of the protein kinase catalytic domain, nucleotide binding and RNase domains of IRE1B in activating autophagy. We found that the nucleotide binding and RNase activity of IRE1B, but not its protein kinase activity or splicing target BZIP60, are required for ER stress-mediated autophagy. Upon ER stress, the RNase activity of IRE1B engages in regulated IRE1-dependent decay of messenger RNA (RIDD), in which mRNAs of secreted proteins are degraded by IRE1 upon ER stress. Twelve genes most highly targeted by RIDD were tested for their role in inhibiting ER stress-induced autophagy, and 3 of their encoded proteins, AT1G66270/BGLU21 (ß-glucosidase 21), AT2G16005/ROSY1/ML (MD2-related lipid recognition protein) and AT5G01870/PR-14 (pathogenesis-related protein 14), were found to inhibit autophagy upon overexpression. From these findings, IRE1B is posited to be a 'licensing factor' linking ER stress to autophagy by degrading the RNA transcripts of factors that interfere with the induction of autophagy. ABBREVIATIONS: ACT2: actin 2; ATG: autophagy-related; BGLU21: ß-glucosidase 21; BIP3: binding protein 3; BZIP: basic leucine zipper; DAPI: 4', 6-diamidino-2-phenylindole; DTT: dithiothreitol; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; IRE1: inositol requiring 1; GFP: green fluorescent protein; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK8/JNK1: mitogen-activated protein kinase 8/c-Jun N-terminal kinase 1; MDC: monodansylcadaverine; PR-14: pathogenesis-related protein 14; RIDD: Regulated IRE1-Dependent Decay of Messenger RNA; ROSY1/ML: interactor of synaptotagmin1/MD2-related lipid recognition protein; Tm: tunicamycin; UPR: unfolded protein response; WT: wild-type.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Autofagia , Estresse do Retículo Endoplasmático , Proteínas Quinases/metabolismo , Estabilidade de RNA , Arabidopsis/genética , Autofagia/genética , Regulação para Baixo/genética , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Mutação/genética , Raízes de Plantas/metabolismo , Protoplastos/metabolismo , Estabilidade de RNA/genética , Plântula/metabolismo
13.
Plant Cell ; 30(6): 1220-1242, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29802214

RESUMO

The unfolded protein response (UPR) is a highly conserved response that protects plants from adverse environmental conditions. The UPR is elicited by endoplasmic reticulum (ER) stress, in which unfolded and misfolded proteins accumulate within the ER. Here, we induced the UPR in maize (Zea mays) seedlings to characterize the molecular events that occur over time during persistent ER stress. We found that a multiphasic program of gene expression was interwoven among other cellular events, including the induction of autophagy. One of the earliest phases involved the degradation by regulated IRE1-dependent RNA degradation (RIDD) of RNA transcripts derived from a family of peroxidase genes. RIDD resulted from the activation of the promiscuous ribonuclease activity of ZmIRE1 that attacks the mRNAs of secreted proteins. This was followed by an upsurge in expression of the canonical UPR genes indirectly driven by ZmIRE1 due to its splicing of Zmbzip60 mRNA to make an active transcription factor that directly upregulates many of the UPR genes. At the peak of UPR gene expression, a global wave of RNA processing led to the production of many aberrant UPR gene transcripts, likely tempering the ER stress response. During later stages of ER stress, ZmIRE1's activity declined, as did the expression of survival modulating genes, Bax inhibitor1 and Bcl-2-associated athanogene7, amid a rising tide of cell death. Thus, in response to persistent ER stress, maize seedlings embark on a course of gene expression and cellular events progressing from adaptive responses to cell death.


Assuntos
Morte Celular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Zea mays/citologia , Zea mays/metabolismo , Morte Celular/genética , Estresse do Retículo Endoplasmático/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resposta a Proteínas não Dobradas/genética , Zea mays/genética
14.
Plant Sci ; 260: 139-143, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28554471

RESUMO

As sessile organisms, plants are subjected to variety of stresses for which they have evolved different protection mechanisms. One mechanism involves endoplasmic reticulum (ER) stress in which the process of protein folding is disturbed and misfolded proteins accumulate in the ER. ER stress elicits the unfolded protein response (UPR) whereby the stress conditions in the ER are communicated to the nucleus to regulate stress response genes. Since the UPR is one of a number of different mechanisms by which plants respond to stress, it is often difficult to distinguish the UPR from other stress responses. Many investigators have relied on the molecular signature of the UPR, the upregulation of UPR genes to implicate the UPR in response to various stresses. However, some of these genes are activated by other stresses making it problematic to know whether the UPR is truly activated in response to a given stress or is part of a complex response. Another challenge is to understand how plants actually perceive different stress conditions. Are all stress conditions that elicit the UPR response caused by an accumulation of misfolded proteins in the ER? Is this the case for salt stress, which induces the UPR? How about biotic stresses, such as bacterial or viral infections? Do they lead to the accumulation of misfolded proteins in the ER or are there other means by which they induce the UPR?


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Plantas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Plantas/genética , Dobramento de Proteína , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética
15.
Front Plant Sci ; 8: 344, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360918

RESUMO

The unfolded protein response (UPR) is a stress response conserved in eukaryotic organisms and activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Adverse environmental conditions disrupt protein folding in the ER and trigger the UPR. Recently, it was found that the UPR can be elicited in the course of plant development and defense. During vegetative plant development, the UPR is involved in normal root growth and development, the effect of which can be largely attributed to the influence of the UPR on plant hormone biology. The UPR also functions in plant reproductive development by protecting male gametophyte development from heat stress. In terms of defense, the UPR has been implicated in virus and microbial defense. Viral defense represents a double edge sword in that various virus infections activate the UPR, however, in a number of cases, the UPR actually supports viral infections. The UPR also plays a role in plant immunity to bacterial infections, again through the action of plant hormones in regulating basal immunity responses.

16.
Plant Physiol ; 173(2): 1137-1145, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923985

RESUMO

The Arabidopsis (Arabidopsis thaliana) genome encodes homologs of the Guided Entry of Tail (GET)-anchored protein system for the posttranslational insertion of tail-anchored (TA) proteins into endoplasmic reticulum (ER) membranes. In yeast, TA proteins are loaded onto the cytosolic targeting factor Get3 and are then delivered to the membrane-associated Get1/2 complex for insertion into ER membranes. The role of the GET system in Arabidopsis was investigated by monitoring the membrane insertion of a tail-anchored protein, SYP72, a syntaxin. SYP72 bound to yeast Get3 in vitro, forming a Get3-SYP72 fusion complex that could be inserted into yeast GET1/2-containing proteoliposomes. The Arabidopsis GET system functioned in vivo to insert TA proteins into ER membranes as demonstrated by the fact that the YFP-tagged SYP72 localized to the ER in wild-type plants but accumulated as cytoplasmic inclusions in get1, get3, or get4 mutants. The GET mutants get1 and get3 were less tolerant of ER stress agents and showed symptoms of ER stress even under unstressed conditions. Hence, the GET system is responsible for the insertion of TA proteins into the ER in Arabidopsis, and mutants with GET dysfunctions are more susceptible to ER stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Qa-SNARE/metabolismo , Mutação/genética , Fenótipo , Proteolipídeos/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Especificidade por Substrato
17.
Plant J ; 88(2): 193-204, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27304577

RESUMO

The unfolded protein response (UPR) is activated by various stresses during vegetative development in Arabidopsis, but is constitutively active in anthers of unstressed plants. To understand the role of the UPR during reproductive development, we analyzed a double mutant, ire1a ire1b. The double mutant knocks out the RNA-splicing arm of the UPR signaling pathway. It is fertile at room temperature but male sterile at modestly elevated temperature (ET). The conditional male sterility in the mutant is a sporophytic trait, and when the double mutant was grown at ET, defects appeared in the structure of the tapetum. As a result, the tapetum in the double mutant failed to properly deposit the pollen coat at ET, which made pollen grains clump and prevented their normal dispersal. IRE1 is a dual protein kinase/ribonuclease involved in the splicing of bZIP60 mRNA, and through complementation analysis of various mutant forms of IRE1b it was demonstrated that the ribonuclease activity of IRE1 was required for protecting male fertility from ET. It was also found that overexpression of SEC31A rescued the conditional male sterility in the double mutant. SEC31A is involved in trafficking from the endoplasmic reticulum to Golgi and a major target of the IRE1-mediated UPR signaling in stressed seedlings. Thus, IRE1, a major component of the UPR, plays an important role in protecting pollen development from ET.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Complexo de Golgi/metabolismo , Temperatura Alta , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética
18.
New Phytol ; 211(2): 418-28, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990454

RESUMO

Endoplasmic reticulum (ER) stress occurs in plants during certain developmental stages or under adverse environmental conditions, as a result of the accumulation of unfolded or misfolded proteins in the ER. To minimize the accumulation of misfolded proteins in the ER, a protein quality control (PQC) system monitors protein folding and eliminates misfolded proteins through either ER-associated protein degradation (ERAD) or autophagy. ER stress elicits the unfolded protein response (UPR), which enhances the operation in plant cells of the ER protein folding machinery and the PQC system. The UPR also reduces protein folding demands in the ER by degrading mRNAs encoding secretory proteins. In plants subjected to severe or chronic stress, UPR promotes programmed cell death (PCD). Progress in the field in recent years has provided insights into the regulatory networks and signaling mechanisms of the ER stress responses in plants. In addition, novel physiological functions of the ER stress responses in plants for coordinating plant growth and development with changing environment have been recently revealed.


Assuntos
Retículo Endoplasmático/metabolismo , Plantas/metabolismo , Dobramento de Proteína , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Modelos Biológicos
19.
Plant J ; 85(1): 83-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26616142

RESUMO

Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.


Assuntos
Arabidopsis/fisiologia , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Fenilbutiratos/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Autofagia/efeitos dos fármacos , Ditiotreitol/farmacologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Desdobramento de Proteína , Tunicamicina/farmacologia , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...