Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Strahlenther Onkol ; 199(4): 389-395, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36826517

RESUMO

PURPOSE: The aim of this study was to analyze the heart dose for left-sided breast cancer that can be achieved during daily practice in patients treated with multicatheter brachytherapy (MCBT) accelerated partial-breast irradiation (APBI) and deep-inspiration breath-hold (DIBH) whole-breast irradiation (WBI) using a simultaneous integrated tumor bed boost (SIB)-two different concepts which nonetheless share some patient overlap. MATERIALS AND METHODS: We analyzed the nominal average dose (Dmean) to the heart as well as the biologically effective dose (BED) and the equivalent dose in 2­Gy fractions (EQD2) for an α/ß of 3 in 30 MCBT-APBI patients and 22 patients treated with DIBH plus SIB. For further dosimetric comparison, we contoured the breast planning target volume (PTV) in each of the brachytherapy planning CTs according to the ESTRO guidelines and computed tangential field plans. Mean dose (Dmean), EQD2 Dmean, and BED Dmean for three dosing schemes were calculated: 50 Gy/25 fractions and two hypofractionated regimens, i.e., 40.05 Gy/15 fractions and 26 Gy/5 fractions. Furthermore, we calculated tangential field plans without a boost for the 22 cases treated with SIB with the standard dosing scheme of 40.05 Gy/15 fractions. RESULTS: MCBT and DIBH radiation therapy both show low-dose exposure of the heart. As expected, hypofractionation leads to sparing of the heart dose. Although MCBT plans were not optimized regarding dose to the heart, Dmean differed significantly between MCBT and DIBH (1.28 Gy vs. 1.91 Gy, p < 0.001) in favor of MCBT, even if the Dmean in each group was very low. In MCBT radiation, the PTV-heart distance is significantly associated with the dose to the heart (p < 0.001), but it is not in DIBH radiotherapy using SIB. CONCLUSION: In daily practice, both DIBH radiation therapy as well as MCBT show a very low heart exposure and may thus reduce long term cardiac morbidity as compared to currently available long-term clinical data of patients treated with conventional tangential field plans in free breathing. Our analysis confirms particularly good cardiac sparing with MCBT-APBI, so that this technique should be offered to patients with left-sided breast cancer if the tumor-associated eligibility criteria are fulfilled.


Assuntos
Braquiterapia , Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Braquiterapia/métodos , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias da Mama/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Coração/efeitos da radiação , Suspensão da Respiração , Órgãos em Risco/efeitos da radiação
2.
Z Med Phys ; 29(4): 337-348, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31056376

RESUMO

INTRODUCTION: Helical TomoTherapy allows a highly conformal dose distribution to complex target geometries with a good protection of organs at risk. However, the small field sizes associated with this method are a possible source of dosimetrical uncertainties. The IAEA has published detector-specific field output correction factors for static fields of the TomoTherapy in the TRS483. This work investigates the average subfield size of helical TomoTherapy plans. MATERIAL AND METHODS: A new parameter for helical TomoTherapy was defined - the fluence-weighted average subfield size. The subfield sizes were extracted from the leaf-opening time sinograms in the RT-plan files for 30 clinical prostate and head and neck plans and were put in relation to Delat4 Phantom+ measurement results. Additionally the influence of planning parameters on the subfield size was studied by varying the modulation factor, number of iterations and pitch in the dose optimization and calculation for three different clinical indications H&N, prostate and rectum cancer. Selected plans were dosimetrically verified by Delta4 measurements to examine the reliability in dependence of the average subfield size. Furthermore, the impact of the planning parameters on a) the dose distribution, with regard to the planning target volume and regions at risks, and b) machine characteristics such as delivery time, actual modulation factor and leaf-opening times were evaluated. RESULTS: The average equivalent square subfield lengths (s¯eq) of the two investigated indications did not differ significantly - prostate plans: 2.75±0.14cm and H&N plans: 2.70±0.16cm, both with a jaw width of 2.5cm. No correlation between field size and measured dose deviation was detected. The number of iterations and the modulation factor have a considerable influence on the average subfield size. The higher the planned modulation factor and the more iterations are used during optimization, the smaller is the subfield size. In our pilot study plans were calculated with field sizes s¯eq between 4.2cm and 1.7cm, with a jaw width of 2.5cm. Again, the measurement results of Delta4 showed no significant deviation from the doses calculated by the TomoTherapy planning system for the whole range of subfield sizes, and no significant correlation between field sizes and dose deviations was found. As expected, the clinical dose distribution improved with increasing modulation factor and an increasing number of iterations. The compromise between an improved dose distribution and smaller s¯eq was shown. CONCLUSION: In this work, a method was presented to determine the average subfield size for helical TomoTherapy plans. The response of the Delta4 did not show any dependence on field size in the range of the field sizes covered by the studied plans. The influence of the subfield sizes on other dosimetry systems remains to be investigated.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada , Humanos , Masculino , Tratamentos com Preservação do Órgão , Dosagem Radioterapêutica , Software
3.
Z Med Phys ; 28(2): 142-149, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29031915

RESUMO

Reference dosimetry by means of clinical linear accelerators in high-energy photon fields requires the determination of the beam quality specifier TPR20,10, which characterizes the relative particle flux density of the photon beam. The measurement of TPR20,10 has to be performed in homogenous photon beams of size 10×10cm2 with a focus-detector distance of 100cm. These requirements cannot be fulfilled by TomoTherapy treatment units from Accuray. The TomoTherapy unit provides a flattening-filter-free photon fan beam with a maximum field width of 40cm and field lengths of 1.0cm, 2.5cm and 5.0cm at a focus-isocenter distance of 85cm. For the determination of the beam quality specifier from measurements under nonstandard reference conditions Sauer and Palmans proposed experiment-based fit functions. Moreover, Sauer recommends considering the impact of the flattening-filter-free beam on the measured data. To verify these fit functions, in the present study a Monte Carlo based model of the treatment head of a TomoTherapyHD unit was designed and commissioned with existing beam data of our clinical TomoTherapy machine. Depth dose curves and dose profiles were in agreement within 1.5% between experimental and Monte Carlo-based data. Based on the fit functions from Sauer and Palmans the beam quality specifier TPR20,10 was determined from field sizes 5×5cm2, 10×5cm2, 20×5cm2 and 40×5cm2 based on dosimetric measurements and Monte Carlo simulations. The mean value from all experimental values of TPR20,10 resulted in TPR20,10¯=0.635±0.4%. The impact of the non-homogenous field due to the flattening-filter-free beam was negligible for field sizes below 20×5cm2. The beam quality specifier calculated by Monte Carlo simulations was TPR20,10=0.628 and TPR20,10=0.631 for two different calculation methods. The stopping power ratio water-to-air sw,aΔ directly depends on the beam quality specifier. The value determined from all experimental TPR20,10 data was sw,aΔ=1.126±0.1%, which is in excellent agreement with the value directly calculated by Monte Carlo simulations. The agreement is a good indication that the equations proposed by Sauer and Palmans are able to calculate the beam quality specifier under reference conditions from measurements in arbitrary photon field sizes with high accuracy and are applicable for the TomoTherapyHD treatment unit.


Assuntos
Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Radioterapia de Intensidade Modulada/instrumentação
4.
Radiat Oncol ; 10: 58, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25889227

RESUMO

BACKGROUND: The new TomoDirect™ modality offers a non-rotational option with discrete beam angles. We have investigated this mode for TBI with the intention to test the feasibility and to establish it as a clinical routine method. Special foci were directed onto treatment planning, dosimetric accuracy and practical aspects. PATIENTS AND METHODS: TBI plans were calculated with TomoDirect™ for a Rando™ phantom and all patients with an intended fractionated total body irradiation between November 2013 and May 2014 (n = 8). Finally, four of these patients were irradiated with TomoDirect™. Additionally we studied variations in the modulation factor, pitch, field width of Y-jaws and dose grid during optimization. Dose measurements were performed using thermoluminescent rods in the Rando™ phantom, with the Delta4® and with ionization chambers in a solid water phantom. RESULTS: For all eight calculated plans with a prescribed dose of 12 Gy Dmean was 12.09-12.33 Gy (12,25 ± 0.08 Gy), D98 11.2-11.6 Gy (11.45 ± 0.12 Gy) and D2 12.6-13.1 Gy (12.94 ± 0.13 Gy). Dmean of inner lungs was 8.73 ± 0.22 Gy on the left side and 8.69 ± 0.27 Gy on the right side. When single planning parameters are varied with otherwise constant parameters, the modulation factor showed the greatest impact on dose homogeneity and treatment time. The impact of the pitch was marginally, and almost equal homogeneity can be obtained with field width of Y-jaws 5 cm and 2.5 cm. Measurements with thermoluminescent rods (n = 25) in the Rando™ phantom showed a mean dose deviation between measured and calculated dose of 0.66 ± 2.26%. 18 of 25 TLDs had a deviation below 3%, seven of 25 TLDs between 3% and 5%. CONCLUSION: TBI with TomoDirect™ allows a superior homogeneity compared to conventional methods, where lung blocks are widely accepted. The treatment is performed only in supine position and is robust and comfortable for the patient. TomoDirect™ allows the implementation of organ-specific dose prescriptions. So the discussion about the balance between the need for aggressive treatment and limited toxicity can be renewed with the new potentials of TomoDirect™ - for children as well as for adults - and possibly yield a better clinical outcome in the future.


Assuntos
Leucemia Mieloide Aguda/radioterapia , Imagens de Fantasmas , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Irradiação Corporal Total , Adulto , Algoritmos , Pré-Escolar , Feminino , Seguimentos , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Posicionamento do Paciente , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Radiometria , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...