Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17361, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253423

RESUMO

Comparisons are made between six different approved face masks concerning their particle transmissibility allied to mechanical properties. The latter involves material testing and stretch or strain behaviour under load. SEM and X-ray elemental analyses showed contrasting structures between random and ordered fibre orientations. These constitute the mask designs where transmissibility is to be minimised. Airflow velocity measurement enabled filtration to be measured between the different mask designs, from two to six layers of different fabrics in combination. SEM provided the fibre diameter and pore size of each mask layer, up to a maximum of six. Stretching each complete mask showed its elasticity and recovery behaviour on an energy basis. The energy conversion involved in mask straining involves areas enclosed within steady and cyclic load-extension plots. Thus, the work done in extending a mask and the energy recovered from its release identified a hysteresis associated with an irrecoverable permanent stretch to the mask fabric. Failure of individual layers, which occurred successively in extended stretch tests, appeared as a drop in a load-extension response. That change is associated with permanent damage to each mask and friction contact within the rearrangement of loose fibre weaves. Masks with the greatest number of layers reduced particle transmissibility. However, woven or ordered mask fabrics in two layers with different orientations provided comparable performance. Simulation of each mechanical response, velocity streamlining and fibre distribution within the mask layers are also presented.

2.
Adv Healthc Mater ; 8(10): e1801556, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30945813

RESUMO

Despite the attention given to the development of novel responsive implants for regenerative medicine applications, the lack of integration with the surrounding tissues and the mismatch with the dynamic mechanobiological nature of native soft tissues remain in the current products. Hierarchical porous membranes based on a poly (urea-urethane) (PUU) nanohybrid have been fabricated by thermally induced phase separation (TIPS) of the polymer solution at different temperatures. Thermoresponsive stiffness softening of the membranes through phase transition from the semicrystalline phase to rubber phase and reverse self-assembly of the quasi-random nanophase structure is characterized at body temperature near the melting point of the crystalline domains of soft segments. The effects of the porous structure and stiffness softening on proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBM-MSCs) are investigated. The results of immunohistochemistry, histological, ELISA, and qPCR demonstrate that hBM-MSCs maintain their lineage commitment during stiffness relaxation; chondrogenic differentiation is favored on the soft and porous scaffold, while osteogenic differentiation is more prominent on the initial stiff one. Stiffness relaxation stimulates more osteogenic activity than chondrogenesis, the latter being more influenced by the synergetic coupling effect of softness and porosity.


Assuntos
Diferenciação Celular , Membranas Artificiais , Células-Tronco Mesenquimais/metabolismo , Nanoestruturas/química , Agrecanas/metabolismo , Proliferação de Células , Condrogênese , Colágeno Tipo II/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células-Tronco Mesenquimais/citologia , Osteogênese , Polímeros/química , Poliuretanos/química , Porosidade , Temperatura , Resistência à Tração , Molhabilidade
3.
J Phys Chem Lett ; 10(3): 386-392, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30614706

RESUMO

In semiconductor nanowires, understanding both the sources of luminescence (excitonic recombination, defects, etc.) and the distribution of luminescent centers (be they uniformly distributed, or concentrated at structural defects or at the surface) is important for synthesis and applications. We develop scanning transmission electron microscopy-cathodoluminescence (STEM-CL) measurements, allowing the structure and cathodoluminescence (CL) of single ZnO nanowires to be mapped at high resolution. Using a CL pixel resolution of 10 nm, variations of the CL spectra within such nanowires in the direction perpendicular to the nanowire growth axis are identified for the first time. By comparing the local CL spectra with the bulk photoluminescence spectra, the CL spectral features are assigned to internal and surface defect structures. Hyperspectral CL maps are deconvolved to enable characteristic spectral features to be spatially correlated with structural features within single nanowires. We have used these maps to show that the spatial distribution of these defects correlates well with regions that show an increased rate of nonradiative transitions.

4.
Acta Biomater ; 80: 188-202, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223094

RESUMO

Cell and tissue stiffness is an important biomechanical signalling parameter for dynamic biological processes; responsive polymeric materials conferring responsive functionality are therefore appealing for in vivo implants. We have developed thermoresponsive poly(urea-urethane) nanohybrid scaffolds with 'stiffness memory' through a versatile 3D printing-guided thermally induced phase separation (3D-TIPS) technique. 3D-TIPS, a combination of 3D printing with phase separation, allows uniform phase-separation and phase transition of the polymer solution at a large interface of network within the printed sacrificial preform, leading to the creation of full-scale scaffolds with bespoke anatomical complex geometry. A wide range of hyperelastic mechanical properties of the soft elastomer scaffolds with interconnected pores at multi-scale, controlled porosity and crystallinity have been manufactured, not previously achievable via direct printing techniques or phase-separation alone. Semi-crystalline polymeric reverse self-assembly to a ground-stated quasi-random nanophase structure, throughout a hierarchical structure of internal pores, contributes to gradual stiffness relaxation during in vitro cell culture with minimal changes to shape. This 'stiffness memory' provides initial mechanical support to surrounding tissues before gradually softening to a better mechanical match, raising hopes for personalized and biologically responsive soft tissue implants which promote human fibroblast cells growth as model and potential scaffold tissue integration. STATEMENT OF SIGNIFICANCE: Biological processes are dynamic in nature, however current medical implants are often stronger and stiffer than the surrounding tissue, with little adaptability in response to biological and physical stimuli. This work has contributed to the development of a range of thermoresponsive nanohybrid elastomer scaffolds, with tuneable stiffness and hierarchically interconnected porous structure, manufactured by a versatile indirect 3D printing technique. For the first time, stiffness memory of the scaffold was observed to be driven by phase transition and a reverse self-assembly from a semicrystalline phase to a quasi-random nanostructured rubber phase. Early insight into cell response during the stiffness relaxation of the scaffolds in vitro holds promise for personalized biologically responsive soft implants.


Assuntos
Impressão Tridimensional , Próteses e Implantes , Alicerces Teciduais/química , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Elasticidade , Elastômeros/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Humanos , Nanoestruturas/química , Compostos de Organossilício/farmacologia , Transição de Fase , Poliuretanos/farmacologia , Porosidade , Temperatura , Resistência à Tração
5.
Sci Rep ; 8(1): 3270, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459783

RESUMO

The inclusion of boron within nanodiamonds to create semiconducting properties would create a new class of applications in the field of nanodiamond electronics. Theoretical studies have differed in their conclusions as to whether nm-scale NDs would support a stable substitutional boron state, or whether such a state would be unstable, with boron instead aggregating or attaching to edge structures. In the present study detonation-derived NDs with purposefully added boron during the detonation process have been studied with a wide range of experimental techniques. The DNDs are of ~4 nm in size, and have been studied with CL, PL, Raman and IR spectroscopies, AFM and HR-TEM and electrically measured with impedance spectroscopy; it is apparent that the B-DNDs studied here do indeed support substitutional boron species and hence will be acting as semiconducting diamond nanoparticles. Evidence for moderate doping levels in some particles (~1017 B cm-3), is found alongside the observation that some particles are heavily doped (~1020 B cm-3) and likely to be quasi-metallic in character. The current study has therefore shown that substitutional boron doping in nm NDs is in fact possible, opening-up the path to a whole host of new applications for this interesting class of nano-particles.

6.
Nano Lett ; 15(11): 7639-43, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26488912

RESUMO

Nanocathodoluminescence reveals the spectral properties of individual InGaN quantum wells in high efficiency light emitting diodes. We observe a variation in the emission wavelength of each quantum well, in correlation with the Si dopant concentration in the quantum barriers. This is reproduced by band profile simulations, which reveal the reduction of the Stark shift in the quantum wells by Si doping. We demonstrate nanocathodoluminescence is a powerful technique to optimize doping in optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...