Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34501088

RESUMO

Post-installed rebars (PIRs) using mortar can offer bond strength at ambient temperature equal or higher to that of cast-in place rebars. However, high temperatures have the effect of weakening the bond, typically governed by the chemical and physical properties of the mortar which is often sensitive to temperature increase. Therefore, the behavior of PIRs in a fire situation becomes vulnerable. Moreover, after exposure of PIRs to high temperature, the heat transfer continues during the post-fire phase, which might endanger the construction after a fire event. In order to evaluate the evolution of the pull-out capacity during fire, Pinoteau et al. have developed the bond resistance integration method (Pinoteau's RIM) to predict the bond resistance value of a rebar subjected to various temperatures in accordance with the fire exposure curves. Therefore, accurate temperature profiles during the post-fire phase are needed to ensure a correct calculation of the post-fire behavior of the PIR connection. This paper presents 3D finite element thermal simulations of PIRs in concrete exposed to ISO 834-1 fire conditions then cooled with ambient air. Numerical thermal profiles are then compared to the experimental results (i.e., post-fire pull-out tests). The proposed model provides guidelines for conducting numerical simulations to determine the thermal entry data necessary for predicting thermal profiles in PIRs during heating and cooling phases. Then, the post-fire pull-out capacity of PIRs in concrete is calculated using Pinoteau's RIM, and compared to experimental post-fire pull-out results.

2.
Materials (Basel) ; 7(4): 3034-3048, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28788605

RESUMO

The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...