Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(7): e0297823, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38832766

RESUMO

Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen Coccidioides. Unfortunately, patients are often misdiagnosed with bacterial pneumonia, leading to inappropriate antibiotic treatment. The soil Bacillus subtilis-like species exhibits antagonistic properties against Coccidioides in vitro; however, the antagonistic capabilities of host microbiota against Coccidioides are unexplored. We sought to examine the potential of the tracheal and intestinal microbiomes to inhibit the growth of Coccidioides in vitro. We hypothesized that an uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of Coccidioides, while partial in vitro depletion through antibiotic disk diffusion assays would allow a niche for fungal growth. We observed that the microbiota grown on 2×GYE (GYE) and Columbia colistin and nalidixic acid with 5% sheep's blood agar inhibited the growth of Coccidioides, but microbiota grown on chocolate agar did not. Partial depletion of the microbiota through antibiotic disk diffusion revealed diminished inhibition and comparable growth of Coccidioides to controls. To characterize the bacteria grown and identify potential candidates contributing to the inhibition of Coccidioides, 16S rRNA sequencing was performed on tracheal and intestinal agar cultures and murine lung extracts. We found that the host bacteria likely responsible for this inhibition primarily included Lactobacillus and Staphylococcus. The results of this study demonstrate the potential of the host microbiota to inhibit the growth of Coccidioides in vitro and suggest that an altered microbiome through antibiotic treatment could negatively impact effective fungal clearance and allow a niche for fungal growth in vivo. IMPORTANCE: Coccidioidomycosis is caused by a fungal pathogen that invades the host lungs, causing respiratory distress. In 2019, 20,003 cases of Valley fever were reported to the CDC. However, this number likely vastly underrepresents the true number of Valley fever cases, as many go undetected due to poor testing strategies and a lack of diagnostic models. Valley fever is also often misdiagnosed as bacterial pneumonia, resulting in 60%-80% of patients being treated with antibiotics prior to an accurate diagnosis. Misdiagnosis contributes to a growing problem of antibiotic resistance and antibiotic-induced microbiome dysbiosis; the implications for disease outcomes are currently unknown. About 5%-10% of symptomatic Valley fever patients develop chronic pulmonary disease. Valley fever causes a significant financial burden and a reduced quality of life. Little is known regarding what factors contribute to the development of chronic infections and treatments for the disease are limited.


Assuntos
Coccidioides , Microbioma Gastrointestinal , Traqueia , Animais , Coccidioides/crescimento & desenvolvimento , Coccidioides/efeitos dos fármacos , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Traqueia/microbiologia , Coccidioidomicose/microbiologia , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Feminino , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética
2.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961490

RESUMO

Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen Coccidioides. Unfortunately, patients are often misdiagnosed with bacterial pneumonia leading to inappropriate antibiotic treatment. Soil bacteria B. subtilis-like species exhibits antagonistic properties against Coccidioides in vitro; however, the antagonistic capabilities of host microbiota against Coccidioides are unexplored. We sought to examine the potential of the tracheal and intestinal microbiomes to inhibit the growth of Coccidioides in vitro. We hypothesized that an uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of Coccidioides while partial in vitro depletion through antibiotic disk diffusion assays would allow a niche for fungal growth. We observed that the microbiota grown on 2xGYE (GYE) and CNA w/ 5% sheep's blood agar (5%SB-CNA) inhibited the growth of Coccidioides, but that grown on chocolate agar does not. Partial depletion of the microbiota through antibiotic disk diffusion revealed that microbiota depletion leads to diminished inhibition and comparable growth of Coccidioides growth to controls. To characterize the bacteria grown and narrow down potential candidates contributing to the inhibition of Coccidioides, 16s rRNA sequencing of tracheal and intestinal agar cultures and murine lung extracts was performed. The identity of host bacteria that may be responsible for this inhibition was revealed. The results of this study demonstrate the potential of the host microbiota to inhibit the growth of Coccidioides in vitro and suggest that an altered microbiome through antibiotic treatment could negatively impact effective fungal clearance and allow a niche for fungal growth in vivo.

3.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398136

RESUMO

A limitation of current deep learning (DL) approaches for single-cell RNA sequencing (scRNAseq) analysis is the lack of interpretability. Moreover, existing pipelines are designed and trained for specific tasks used disjointly for different stages of analysis. We present scANNA, a novel interpretable DL model for scRNAseq studies that leverages neural attention to learn gene associations. After training, the learned gene importance (interpretability) is used to perform downstream analyses (e.g., global marker selection and cell-type classification) without retraining. ScANNA's performance is comparable to or better than state-of-the-art methods designed and trained for specific standard scRNAseq analyses even though scANNA was not trained for these tasks explicitly. ScANNA enables researchers to discover meaningful results without extensive prior knowledge or training separate task-specific models, saving time and enhancing scRNAseq analyses.

4.
J Fungi (Basel) ; 9(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367586

RESUMO

Valley fever is a respiratory disease caused by a soil fungus, Coccidioides, that is inhaled upon soil disruption. One mechanism by which the host immune system attempts to control and eliminate Coccidioides is through granuloma formation. However, very little is known about granulomas during Coccidioides infection. Granulomas were first identified in tuberculosis (TB) lungs as early as 1679, and yet many gaps in our understanding of granuloma formation, maintenance, and regulation remain. Granulomas are best defined in TB, providing clues that may be leveraged to understand Coccidioides infections. Granulomas also form during several other infectious and spontaneous diseases including sarcoidosis, chronic granulomatous disease (CGD), and others. This review explores our current understanding of granulomas, as well as potential mechanisms, and applies this knowledge to unraveling coccidioidomycosis granulomas.

5.
J Fungi (Basel) ; 9(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37233297

RESUMO

Between 70 and 80% of Valley fever patients receive one or more rounds of antibiotic treatment prior to accurate diagnosis with coccidioidomycosis. Antibiotic treatment and infection (bacterial, viral, fungal, parasitic) often have negative implications on host microbial dysbiosis, immunological responses, and disease outcome. These perturbations have focused on the impact of gut dysbiosis on pulmonary disease instead of the implications of direct lung dysbiosis. However, recent work highlights a need to establish the direct effects of the lung microbiota on infection outcome. Cystic fibrosis, chronic obstructive pulmonary disease, COVID-19, and M. tuberculosis studies suggest that surveying the lung microbiota composition can serve as a predictive factor of disease severity and could inform treatment options. In addition to traditional treatment options, probiotics can reverse perturbation-induced repercussions on disease outcomes. The purpose of this review is to speculate on the effects perturbations of the host microbiome can have on coccidioidomycosis progression. To do this, parallels are drawn to aa compilation of other host microbiome infection studies.

6.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187518

RESUMO

Unlike in infection and cancer, T cell exhaustion in autoimmune disease has not been clearly defined. Here we set out to understand inhibitory protein (PD-1, Tim3, CTLA4, Lag3) expression in CXCR5- and CXCR5+ CD8 and CD4 T cells in systemic lupus erythematosus. CXCR5+ CD8 and CD4 T cells express PD-1 and engage B cells in germinal center reactions, leading to autoantibody formation in autoimmunity. We hypothesized that CXCR5+ CD8 T cells develop an exhausted phenotype as SLE autoimmunity expands from initial to chronic, self-perpetuating disease due to chronic self-antigen exposure. Our results indicate that there is no exhaustion frequency differences between sexes, although disease kinetics vary by sex. CXCR5+ CD8 T cells express primarily IFNγ, known to promote autoimmune disease development, whereas CXCR5-CD8 T cells express TNFα and IFNγ as disease progresses from 2-6 months. Tim3 is the highest expressed inhibitory marker for all CD4 and CD8 T cell populations demonstrating potential for terminally exhausted populations. CTLA4 expression on CD4 T cells suggests potential tolerance induction in these cells. We identified exhaustion phenotypes within autoimmune disease that progress with increasing lupus erythematosus severity and possibly provide a feedback mechanism for immunological tolerance. Highlights: CXCR5- and CXCR5+ CD8 T cells expand with rate of disease in SLE mouse model.CXCR5+ CD8 T cells are low contributors to TNFα disease progression unlike CXCR5-CD8 T cells but may increase disease mechanisms through high IFNγ production.Inhibitory markers upregulate in frequency with the highest amounts seen in Tim3+ populations. Tim3+Lag3+ expression may be an indicator of terminal differentiation for all populations.Inhibitory marker expression frequency was unrelated to sex.

7.
Front Med (Lausanne) ; 9: 1034764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314014

RESUMO

CXCR5+CD8 T cells have attracted significant interest within multiple areas of immunology, cancer, and infection. This is in part due to their apparent dual functionality. These cells perform as cytotoxic cells in a variety of infection states including LCMV, HBV, HIV and SIV. However, CXCR5+CD8 T cells also associate with B cells in peripheral organs and function to stimulate B cell proliferation, antibody/B cell receptor class-switch, and antibody production. CXCR5+CD8 T cells are similar to CXCR5+CD4 T follicular helpers in their genetic make-up, B cell interactions, and functionality despite possessing elevated programmed cell death 1 and cytotoxic proteins. Within cancer CXCR5+CD8 T cells have risen as potential prognostic markers for overall survival and are functionally cytotoxic within tumor microenvironments. In inflammatory disease and autoimmunity, CXCR5+CD8 T cells are implicated in disease progression. During viral infection and cancer, CXCR5 expression on CD8 T cells generally is indicative of progenitor memory stem-like exhausted cells, which are more responsive to immune checkpoint blockade therapy. The use of immune checkpoint inhibitors to overcome immune exhaustion in cancer, and subsequent consequence of immune adverse events, highlights the dual nature of the cellular immune response. This review will detail the functionality of CXCR5+CD8 T cells in cancer and autoimmunity with potential repercussions during immune checkpoint blockade therapy discussed.

8.
Bioinformatics ; 38(8): 2194-2201, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35179571

RESUMO

MOTIVATION: Single-cell RNA sequencing (scRNAseq) technologies allow for measurements of gene expression at a single-cell resolution. This provides researchers with a tremendous advantage for detecting heterogeneity, delineating cellular maps or identifying rare subpopulations. However, a critical complication remains: the low number of single-cell observations due to limitations by rarity of subpopulation, tissue degradation or cost. This absence of sufficient data may cause inaccuracy or irreproducibility of downstream analysis. In this work, we present Automated Cell-Type-informed Introspective Variational Autoencoder (ACTIVA): a novel framework for generating realistic synthetic data using a single-stream adversarial variational autoencoder conditioned with cell-type information. Within a single framework, ACTIVA can enlarge existing datasets and generate specific subpopulations on demand, as opposed to two separate models [such as single-cell GAN (scGAN) and conditional scGAN (cscGAN)]. Data generation and augmentation with ACTIVA can enhance scRNAseq pipelines and analysis, such as benchmarking new algorithms, studying the accuracy of classifiers and detecting marker genes. ACTIVA will facilitate analysis of smaller datasets, potentially reducing the number of patients and animals necessary in initial studies. RESULTS: We train and evaluate models on multiple public scRNAseq datasets. In comparison to GAN-based models (scGAN and cscGAN), we demonstrate that ACTIVA generates cells that are more realistic and harder for classifiers to identify as synthetic which also have better pair-wise correlation between genes. Data augmentation with ACTIVA significantly improves classification of rare subtypes (more than 45% improvement compared with not augmenting and 4% better than cscGAN) all while reducing run-time by an order of magnitude in comparison to both models. AVAILABILITY AND IMPLEMENTATION: The codes and datasets are hosted on Zenodo (https://doi.org/10.5281/zenodo.5879639). Tutorials are available at https://github.com/SindiLab/ACTIVA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Análise da Expressão Gênica de Célula Única , Animais , Algoritmos , Sequenciamento do Exoma , Benchmarking
9.
J Fungi (Basel) ; 7(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34436169

RESUMO

Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. The host immune responses that define disease outcome during infection are largely unknown, although T helper responses are required. Adaptive immunity is influenced by innate immunity as antigen-presenting cells activate and educate adaptive responses. Macrophage and dendritic cell (DC) recognition of pathogen surface molecules are critical for Coccidioides clearance. We characterize the broad innate immune responses to Coccidioides by analyzing macrophage and dendritic cell responses to Coccidioides arthroconidia using avirulent, vaccine Coccidioides strain NR-166 (Δcts2/Δard1/Δcts3), developed from parental virulent strain C735. We developed a novel flow cytometry-based method to analyze macrophage phagocytosis to complement traditional image-scoring methods. Our study found that macrophage polarization is blocked at M0 phase and activation reduced, while DCs polarize into proinflammatory DC1s, but not anti-inflammatory DC2, following interaction with Coccidioides. However, DCs exhibit a contact-dependent reduced activation to Coccidioides as defined by co-expression of MHC-II and CD86. In vivo, only modest DC1/DC2 recruitment and activation was observed with avirulent Coccidioides infection. In conclusion, the vaccine Coccidioides strain recruited a mixed DC population in vivo, while in vitro data suggest active innate immune cell inhibition by Coccidioides.

10.
J Autoimmun ; 123: 102690, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34274825

RESUMO

Follicular CXCR5+ PD-1+ CD8 T cells (CD8 Tfc) arise in multiple models of systemic autoimmunity yet their functional contribution to disease remains in debate. Here we define the follicular localization and functional interactions of CD8 Tfc with B cells during autoimmune disease. The absence of functional T regulatory cells in autoimmunity allows for CD8 Tfc development that then expands with lymphoproliferation. CD8 Tfc are identifiable within the lymph nodes and spleen during systemic autoimmunity, but not during tissue-restricted autoimmune disease. Autoimmune CD8 Tfc cells are polyfunctional, producing helper cytokines IL-21, IL-4, and IFNγ while maintaining cytolytic proteins CD107a, granzyme B, and TNF. During autoimmune disease, IL-2-KO CD8 T cells infiltrate the B cell follicle and germinal center, including the dark zone, and in vitro induce activation-induced cytidine deaminase in naïve B cells via IL-4 secretion. CD8 Tfc represent a unique CD8 T cell population with a diverse effector cytokine repertoire that can contribute to pathogenic autoimmune B cell response.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Centro Germinativo/imunologia , Células T Auxiliares Foliculares/imunologia , Animais , Linfócitos B/imunologia , Citidina Desaminase/biossíntese , Células Matadoras Induzidas por Citocinas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
11.
Sci Rep ; 10(1): 21994, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319815

RESUMO

IL-2Rα, in part, comprises the high affinity receptor for IL-2, a cytokine important in immune proliferation, activation, and regulation. IL-2Rα deficient mice (IL-2Rα-KO) develop systemic autoimmune disease and die from severe anemia between 18 and 80 days of age. These mice develop kinetically distinct autoimmune progression, with approximately a quarter dying by 21 days of age and half dying after 30 days. This research aims to define immune parameters and cytokine signaling that distinguish cohorts of IL-2Rα-KO mice that develop early- versus late-stage autoimmune disease. To investigate these differences, we evaluated complete blood counts (CBC), antibody binding of RBCs, T cell numbers and activation, hematopoietic progenitor changes, and signaling kinetics, during autoimmune hemolytic anemia (AIHA) and bone marrow failure. We identified several alterations that, when combined, correlate to disease kinetics. Early onset disease correlates with anti-RBC antibodies, lower hematocrit, and reduced IL-7 signaling. CD8 regulatory T cells (Tregs) have enhanced apoptosis in early disease. Further, early and late end stage disease, while largely similar, had several differences suggesting distinct mechanisms drive autoimmune disease kinetics. Therefore, IL-2Rα-KO disease pathology rates, driven by T cell signaling, promote effector T cell activation and expansion and Treg dysfunction.


Assuntos
Subunidade alfa de Receptor de Interleucina-2/deficiência , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Animais , Apoptose , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Eritrócitos/metabolismo , Memória Imunológica , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Cinética , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Timo/crescimento & desenvolvimento
12.
Front Cell Infect Microbiol ; 10: 581101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262956

RESUMO

Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. This emerging infectious disease ranges from asymptomatic to pulmonary disease and disseminated infection. Most infections are cleared with little to no medical intervention whereas chronic disease often requires life-long medication with severe impairment in quality of life. It is unclear what differentiates hosts immunity resulting in disease resolution versus chronic infection. Current understanding in mycology-immunology suggests that chronic infection could be due to maladaptive immune responses. Immunosuppressed patients develop more severe disease and mouse studies show adaptive Th1 and Th17 responses are required for clearance. This is supported by heightened immunosuppressive regulatory responses and lowered anti-fungal T helper responses in chronic Coccidioides patients. Diagnosis and prognosis is difficult as symptoms are broad and overlapping with community acquired pneumonia, often resulting in misdiagnosis and delayed treatment. Furthermore, we lack clear biomarkers of disease severity which could aid prognosis for more effective healthcare. As the endemic region grows and population increases in endemic areas, the need to understand Coccidioides infection is becoming urgent. There is a growing effort to identify fungal virulence factors and host immune components that influence fungal immunity and relate these to patient disease outcome and treatment. This review compiles the known immune responses to Coccidioides spp. infection and various related fungal pathogens to provide speculation on Coccidioides immunity.


Assuntos
Coccidioides , Coccidioidomicose , Animais , Coccidioidomicose/diagnóstico , Humanos , Camundongos , Qualidade de Vida , Fatores de Virulência
13.
Front Immunol ; 10: 1322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275308

RESUMO

CD8 T cells are infrequently considered part of germinal center reactions. Yet, a distinct CXCR5+ CD8 T cell subset identified within the B cell follicle and germinal center in situations of chronic antigen has recently been defined. CXCR5+ CD8 T cells maintain transcriptional and phenotypic features consistent with the CD8 T cell nomenclature of a non-exhausted, effector memory population. CD8 T cell localization to the B cell follicle suggests a functional profile similar to CD4 T follicular helper cells that are licensed to promote B cell responses. The functional mechanisms defined under different immune settings, while largely similar, differentially control disease pathogenesis. CXCR5+ CD8 T cells control viral load during infection, and also promote antibody-mediated autoimmune disease progression. The existence of this novel CXCR5+ CD8 T cell subset in human and murine models of disease may provide a paradigm shift in our understanding of germinal center reactions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Receptores CXCR5/imunologia , Animais , Linfócitos B/imunologia , Centro Germinativo/imunologia , Humanos , Linfócitos T Auxiliares-Indutores/imunologia , Carga Viral/imunologia
15.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967089

RESUMO

T cell exhaustion is a state of hyporesponsiveness that develops during many chronic infections and cancer. Neutralization of inhibitory receptors, or "checkpoint blockade," can reverse T cell exhaustion and lead to beneficial prognoses in experimental and clinical settings. Whether checkpoint blockade can resolve lethal acute infections is less understood but may be beneficial in vaccination protocols that fail to elicit sterilizing immunity. Since a fully protective vaccine for any human parasite has yet to be developed, we explored the efficacy of checkpoint inhibitors in a mouse model of Toxoplasma gondii reinfection. Mice chronically infected with an avirulent type III strain survive reinfection with the type I RH strain but not the MAS, GUY-DOS, and GT1 parasite strains. We report here that mouse susceptibility to secondary infection correlates with the initial parasite burden and that protection against the RH strain is dependent on CD8 but not CD4 T cells in this model. When given a lethal secondary infection, CD8 and CD4 T cells upregulate several coinhibitory receptors, including PD-1, TIM-3, 4-1bb, and CTLA-4. Moreover, the gamma interferon (IFN-γ) response of CD8 but not CD4 T cells is significantly reduced during secondary infection with virulent strains, suggesting that checkpoint blockade may reduce disease severity. However, single and combination therapies targeting TIM-3, CTLA-4, and/or PD-L1 failed to reverse susceptibility to secondary infection. These results suggest that additional host responses, which are refractory to checkpoint blockade, are likely required for immunity to this pathogen.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose Animal/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
J Immunol ; 201(1): 31-40, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29743314

RESUMO

CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality.


Assuntos
Anemia Hemolítica Autoimune/imunologia , Anemia Hemolítica Autoimune/patologia , Linfócitos T CD8-Positivos/imunologia , Switching de Imunoglobulina/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoimunidade/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Eritrócitos/imunologia , Feminino , Interleucina-2/genética , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismo
17.
J Autoimmun ; 75: 58-67, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27453063

RESUMO

Bone marrow (BM) failure syndrome encompasses a group of disorders characterized by BM stem cell dysfunction, resulting in varying degrees of hypoplasia and blood pancytopenia, and in many patients is autoimmune and inflammatory in nature. The important role of T helper 1 (Th1) polarized CD4+ T cells in driving BM failure has been clearly established in several models. However, animal model data demonstrating a functional role for CD8+ T cells in BM dysfunction is largely lacking and our objective was to test the hypothesis that CD8+ T cells play a non-redundant role in driving BM failure. Clinical evidence implicates a detrimental role for CD8+ T cells in BM failure and a beneficial role for Foxp3+ regulatory T cells (Tregs) in maintaining immune tolerance in the BM. We demonstrate that IL-2-deficient mice, which have a deficit in functional Tregs, develop spontaneous BM failure. Furthermore, we demonstrate a critical role for CD8+ T cells in the development of BM failure, which is dependent on the cytokine, IFNγ. CD8+ T cells promote hematopoietic stem cell dysfunction and depletion of myeloid lineage progenitor cells, resulting in anemia. Adoptive transfer experiments demonstrate that CD8+ T cells dramatically expedite disease progression and promote CD4+ T cell accumulation in the BM. Thus, BM dysregulation in IL-2-deficient mice is mediated by a Th1 and IFNγ-producing CD8+ T cell (Tc1) response.


Assuntos
Autoimunidade/imunologia , Células da Medula Óssea/imunologia , Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Células-Tronco Hematopoéticas/imunologia , Transferência Adotiva , Anemia/genética , Anemia/imunologia , Anemia/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Citometria de Fluxo , Fatores de Transcrição Forkhead , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-2/deficiência , Interleucina-2/genética , Interleucina-2/imunologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
18.
Semin Immunol ; 26(4): 295-302, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25082737

RESUMO

The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism.


Assuntos
Planárias/imunologia , Planárias/fisiologia , Animais , Evolução Biológica , Sistema Imunitário , Imunidade Inata , Regeneração
19.
Microbes Infect ; 16(8): 591-600, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25038397

RESUMO

Coccidioides immitis and Coccidioides posadasii contribute to the development of Valley Fever. The ability of these fungal pathogens to evade the host immune system creates difficulty in recognition and treatment of this debilitating infection. In this review, we describe the current knowledge of Valley Fever and approaches to improve prevention, detection, and treatment.


Assuntos
Coccidioides/isolamento & purificação , Coccidioidomicose/microbiologia , Poeira , Microbiologia Ambiental , Coccidioides/patogenicidade , Coccidioidomicose/diagnóstico , Coccidioidomicose/tratamento farmacológico , Coccidioidomicose/prevenção & controle , Humanos
20.
J Autoimmun ; 45: 68-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23871638

RESUMO

Until recently, little was known about the importance of CD8+ T effectors in promoting and preventing autoimmune disease development. CD8+ T cells can oppose or promote autoimmune disease through activities as suppressor cells and as cytotoxic effectors. Studies in several distinct autoimmune models and data from patient samples are beginning to establish the importance of CD8+ T cells in these diseases and to define the mechanisms by which these cells influence autoimmunity. CD8+ effectors can promote disease via dysregulated secretion of inflammatory cytokines, skewed differentiation profiles and inappropriate apoptosis induction of target cells, and work to block disease by eliminating self-reactive cells and self-antigen sources, or as regulatory T cells. Defining the often major contribution of CD8+ T cells to autoimmune disease and identifying the mechanisms by which they alter the pathogenesis of disease is a rapidly expanding area of study and will add valuable information to our understanding of the kinetics, pathology and biology of autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Progressão da Doença , Humanos , Tolerância Imunológica , Imunomodulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...