Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1296: 342350, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401936

RESUMO

BACKGROUND: Spectroelectrochemistry (SEC) is a valuable analytical tool providing insights to reaction mechanisms and the structure of species involved in charge transfer reactions. Most of commercial SEC setups are based on platinum working electrodes where the adsorption of species involved in reactions often complicates their analysis. RESULTS: In this work, we employ an array of pencil graphite rods as an optically transparent working electrode in a custom-made air-tight thin-layer cell suitable for the SEC analysis performed here in acetonitrile as a representative non-aqueous solvent. The functionality of the device was demonstrated by UV-Vis SEC sensing of charge transfer reactions of ruthenium acetylacetonate, ferrocene and ethylviologen dibromide redox probes performed employing the cyclic voltammetry. The SEC response obtained for all three probes confirmed no adsorption and the absence of oxygen in the cell. Furthermore, we have developed and utilized finite element method numerical simulations considering charge transfer reactions coupled with the diffusional mass transport to model the cyclic voltammetric response and the reaction conversion in the thin-layer SEC cell. SIGNIFICANCE: Our work paves the way for easy-to-assemble customized air-tight adsorption-free SEC devices with the manufacturing costs well below those of commercially available platforms. Developed computational approaches have the predictive power for optimizing reaction conditions and the geometry of the SEC cell.

2.
Biosensors (Basel) ; 12(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35624610

RESUMO

This manuscript investigates the chemical and structural stability of 3D printing materials (3DPMs) frequently used in electrochemistry. Four 3D printing materials were studied: Clear photopolymer, Elastic photopolymer, PET filament, and PLA filament. Their stability, solubility, structural changes, flexibility, hardness, and color changes were investigated after exposure to selected organic solvents and supporting electrolytes. Furthermore, the available potential windows and behavior of redox probes in selected supporting electrolytes were investigated before and after the exposure of the 3D-printed objects to the electrolytes at various working electrodes. Possible electrochemically active interferences with an origin from the 3DPMs were also monitored to provide a comprehensive outline for the use of 3DPMs in electrochemical platform manufacturing.


Assuntos
Impressão Tridimensional , Eletroquímica , Eletrodos
3.
Biosensors (Basel) ; 12(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448301

RESUMO

New screen-printed sensor with a boron-doped diamond working electrode (SP/BDDE) was fabricated using a large-area linear antenna microwave chemical deposition vapor system (LA-MWCVD) with a novel precursor composition. It combines the advantages of disposable printed sensors, such as tailored design, low cost, and easy mass production, with excellent electrochemical properties of BDDE, including a wide available potential window, low background currents, chemical resistance, and resistance to passivation. The newly prepared SP/BDDEs were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry and electrochemical impedance spectroscopy using inner sphere ([Fe(CN)6]4-/3-) and outer sphere ([Ru(NH3)6]2+/3+) redox probes. Moreover, the applicability of these new sensors was verified by analysis of the anti-inflammatory drug lornoxicam in model and pharmaceutical samples. Using optimized differential pulse voltammetry in Britton-Robinson buffer of pH 3, detection limits for lornoxicam were 9 × 10-8 mol L-1. The oxidation mechanism of lornoxicam was investigated using bulk electrolysis and online electrochemical cell with mass spectrometry; nine distinct reaction steps and corresponding products and intermediates were identified.


Assuntos
Boro , Eletrólise , Boro/química , Eletrodos , Oxirredução , Análise Espectral Raman
4.
Biosensors (Basel) ; 12(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049654

RESUMO

The review describes fentanyl and its analogs as new synthetic opioids and the possibilities of their identification and determination using electrochemical methods (e.g., voltammetry, potentiometry, electrochemiluminescence) and electrochemical methods combined with various separation methods. The review also covers the analysis of new synthetic opioids, their parent compounds, and corresponding metabolites in body fluids, such as urine, blood, serum, and plasma, necessary for a fast and accurate diagnosis of intoxication. Identifying and quantifying these addictive and illicit substances and their metabolites is necessary for clinical, toxicological, and forensic purposes. As a reaction to the growing number of new synthetic opioid intoxications and increasing fatalities observed over the past ten years, we provide thorough background for developing new biosensors, screen-printed electrodes, or other point-of-care devices.


Assuntos
Analgésicos Opioides , Fentanila
5.
Monatsh Chem ; 152(1): 35-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33487754

RESUMO

A new method for determination of selected heavy metals (Cd, Pb, Cu, Zn, and Ni) in honey bee venom was developed. Heavy metals are metabolized and incorporated into bee products, including honey and honey bee venom (apitoxin). Their composition reflects contamination of "bee environment", providing information about heavy metal contamination in the neighborhood of human dwellings. Moreover, assessment of bee products contamination is relevant for medicine, as they are a tool for promising therapeutic and chemoprophylactic strategies against COVID-19 (SARS-CoV-2). Owing to the complicated matrix, the developed method consists of wet mineralization with sulfuric acid, nitric acid, under increased temperature, and pressure and subsequent repeated boiling with concentrated nitric acid. Determination of the selected metals was carried out by anodic or cathodic stripping voltammetry on two types of electrodes: pen-type hanging mercury drop electrode (HMDE) and PLA filament with carbon conductive admixture (PLA-C) for 3D printer. Contents of lead and cadmium in all analyzed bee venom samples were on the level of mg kg-1, of nickel and copper about ten times higher, and of zinc on the level of g kg-1. The results achieved using HMDE were recorded with average relative standard deviation (RSD) 5.4% (from 3.2% to 8.6%) and using PLA-C 11.8% (from 6.5% to 18.0%). The results achieved using both electrodes proved to be equivalent with statistical probability higher than 95%.

6.
Talanta ; 221: 121594, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076128

RESUMO

Novel method for the determination of a tumor marker homovanillic acid (HVA) in human urine was developed. Combination of hollow fiber - based liquid-phase microextraction (HF-LPME) and differential pulse voltammetry (DPV) at a cathodically pre-treated boron doped diamond electrode (BDDE) was applied for these purposes. Optimum conditions were: butyl benzoate as supported liquid membrane (SLM) formed on polypropylene HF, 0.1 mol L-1 HCl as donor phase, 0.1 mol L-1 sodium phosphate buffer of pH 6 as acceptor phase, and 30 min extraction time. HF-LPME-DPV concentration dependence was linear in the range from 1.2 to 100 µmol L-1. Limits of quantification (LOQ) and detection (LOD) were 1.2 and 0.4 µmol L-1, respectively. The applicability of the developed method was verified by analysis of human urine. Standard addition method was used, found HVA concentration was 13.5 ± 1.3 µmol L-1, RSD = 9.3% (n=5).


Assuntos
Biomarcadores Tumorais , Microextração em Fase Líquida , Cromatografia Líquida de Alta Pressão , Ácido Homovanílico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...