Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37999288

RESUMO

Fine-tuning of grain sizes can significantly influence the interaction between different dielectric phenomena, allowing the development of materials with tailored dielectric resistivity. By virtue of various synthesis mechanisms, a pathway to manipulate grain sizes and, consequently, tune the material's dielectric response is revealed. Understanding these intricate relationships between granulation and dielectric properties can pave the way for designing and optimizing materials for specific applications where tailored dielectric responses are sought. The experimental part involved the fabrication of dense BCT-BZT ceramics with different grain sizes by varying the synthesis (conventional solid-state reaction route and sol-gel) and consolidation methods. Both consolidation methods produced well-crystallized specimens, with Ba0.85Ca0.15O3Ti0.9Zr0.1 (BCTZ) perovskite as the major phase. Conventional sintering resulted in microstructured and submicron-structured BCT-BZT ceramics, with average grain sizes of 2.35 µm for the solid-state sample and 0.91 µm for the sol-gel synthesized ceramic. However, spark plasma sintering produced a nanocrystalline specimen with an average grain size of 67.5 nm. As the grain size decreases, there is a noticeable decrease in the maximum permittivity, a significant reduction in dielectric losses, and a shifting of the Curie temperature towards lower values.

2.
Adv Sci (Weinh) ; 10(6): e2205476, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592417

RESUMO

Pb(Zr,Ti)O3 (PZT) is the most common ferroelectric (FE) material widely used in solid-state technology. Despite intense studies of PZT over decades, its intrinsic band structure, electron energy depending on 3D momentum k, is still unknown. Here, Pb(Zr0.2 Ti0.8 )O3 using soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) is explored. The enhanced photoelectron escape depth in this photon energy range allows sharp intrinsic definition of the out-of-plane momentum k and thereby of the full 3D band structure. Furthermore, the problem of sample charging due to the inherently insulating nature of PZT is solved by using thin-film PZT samples, where a thickness-induced self-doping results in their heavy doping. For the first time, the soft-X-ray ARPES experiments deliver the intrinsic 3D band structure of PZT as well as the FE-polarization dependent electrostatic potential profile across the PZT film deposited on SrTiO3 and Lax SrMn1- x O3 substrates. The negative charges near the surface, required to stabilize the FE state pointing away from the sample (P+), are identified as oxygen vacancies creating localized in-gap states below the Fermi energy. For the opposite polarization state (P-), the positive charges near the surface are identified as cation vacancies resulting from non-ideal stoichiometry of the PZT film as deduced from quantitative XPS measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...