Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406299, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772710

RESUMO

The extent to which electrophores covalently bridged by a saturated linker are electrochemically independent was investigated considering the charge/spin duality of the electron and functionality of the electrophore as a spin carrier upon reduction. By combining computational modeling with electrochemical experiments, we investigated the mechanism by which tethered electrophores react together within 4,4'-oligo[n]methylene-bipyridinium assemblies (with n=2 to 5). We show that native dicationic electrophores (redox state Z=+2) are folded prior to electron injection into the system, allowing the emergence of supra-molecular orbitals (supra-MOs) likely to support the process of the reductive σ bond formation giving cyclomers. Indeed, for Z=+2, London Dispersion (LD) forces contribute to flatten the potential energy surface such that all-trans and folded conformers are approximately isoenergetic. Then, upon one-electron injection, for radical cations (Z=+1), LD forces significantly stabilize the folded conformers, except for the ethylene derivative deprived of supra-MOs. For radical cations equipped with supra-MOs, the unpaired electron is delocalized over both heterocycles through space. Cyclomer completion (Z=0) upon the second electron transfer occurs according to the inversion of redox potentials. This mechanism explains why intramolecular reactivity is favored and why pyridinium electrophores are not independent.

2.
Chemistry ; 30(23): e202303530, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517291

RESUMO

Among inherently chiral selectors of axial stereogenicity, usually resulting in very good enantiodiscrimination performances, the biindole-based family has the additional advantage of very easy functionalization of the two nitrogen atoms with a variety of substituents with desirable properties. Aiming to evaluate the possibility of exploiting such feature to enhance the enantiodiscrimination ability of the archetype structure, a series of three inherently chiral monomers were designed and synthesized, characterised by a 2,2'-biindole atropisomeric core conjugated to bithiophene wings enabling fast and regular electrooligomerization, and functionalised at the nitrogen atoms with an ethyl, a methoxyethyl, or a hydroxyethyl substituent. Nitrogen alkylation was also exploited to obtain for the first time the chemical resolution of the biindole selectors without employing chiral HPLC. The enantiodiscrimination ability of the selector series was comparatively evaluated in proof-of-concept chiral voltammetry experiments with a "benchmark" chiral ferrocenyl probe as well as with chiral non-steroidal anti-inflammatory drugs naproxen and ketoprofen. The large enantiomer potential differences for all probes increased in the ethyl < methoxyethyl ≪ hydroxyethyl sequence of selector substituents, supporting our assumption on the beneficial role of an additional coordination element. The powerful hydroxyethyl selector was also applied to ketoprofen in a commercial drug matrix.

3.
Anal Chim Acta ; 1296: 342350, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401936

RESUMO

BACKGROUND: Spectroelectrochemistry (SEC) is a valuable analytical tool providing insights to reaction mechanisms and the structure of species involved in charge transfer reactions. Most of commercial SEC setups are based on platinum working electrodes where the adsorption of species involved in reactions often complicates their analysis. RESULTS: In this work, we employ an array of pencil graphite rods as an optically transparent working electrode in a custom-made air-tight thin-layer cell suitable for the SEC analysis performed here in acetonitrile as a representative non-aqueous solvent. The functionality of the device was demonstrated by UV-Vis SEC sensing of charge transfer reactions of ruthenium acetylacetonate, ferrocene and ethylviologen dibromide redox probes performed employing the cyclic voltammetry. The SEC response obtained for all three probes confirmed no adsorption and the absence of oxygen in the cell. Furthermore, we have developed and utilized finite element method numerical simulations considering charge transfer reactions coupled with the diffusional mass transport to model the cyclic voltammetric response and the reaction conversion in the thin-layer SEC cell. SIGNIFICANCE: Our work paves the way for easy-to-assemble customized air-tight adsorption-free SEC devices with the manufacturing costs well below those of commercially available platforms. Developed computational approaches have the predictive power for optimizing reaction conditions and the geometry of the SEC cell.

4.
Anal Chim Acta ; 1267: 341379, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257964

RESUMO

Recent advances in fused deposition modelling 3D printing (FDM 3DP) and synthesis of printable electrically conductive materials enabled the manufacture of customized electrodes and electrochemical devices by this technique. The past couple of years have seen a boom in applying approaches of FDM 3DP in the realm of spectroelectrochemistry (SEC). Despite significant progress, reported designs of SEC devices still rely on conventionally manufactured optical components such as quartz windows and cuvettes. To bridge this technological gap, in this work we apply bi-material FDM 3DP combining electrically conductive and optically translucent filaments to manufacture working electrodes and cells, constituting a fully integrated microfluidic platform for transmission absorption UV-Vis SEC measurements. The cell design enables de-aeration of samples and their convenient handling and analysis. Employing cyclic voltammetric measurements with ruthenium(III) acetylacetonate, ethylviologen dibromide and ferrocenemethanol redox-active probes as model analytes, we demonstrate that the presented platform allows SEC sensing of reactants, intermediates and products of charge transfer reactions, including the inspection of their long-term stability. Approaches developed and presented in this work pave the way for manufacturing customized SEC devices with dramatically reduced costs compared to currently available commercial platforms.

5.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500413

RESUMO

Self-assembled monolayers (SAMs) of terpyridine-based transition metal (ruthenium and osmium) complexes, anchored to gold substrate via tripodal anchoring groups, have been investigated as possible redox switching elements for molecular electronics. An electrochemical study was complemented by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) methods. STM was used for determination of the SAM conductance values, and computation of the attenuation factor ß from tunneling current-distance curves. We have shown that SAMs of Os-tripod molecules contain larger adlayer structures compared with SAMs of Ru-tripod molecules, which are characterized by a large number of almost evenly distributed small islands. Furthermore, upon cyclic voltammetric experimentation, Os-tripod films rearrange to form a smaller number of even larger islands, reminiscent of the Ostwald ripening process. Os-tripod SAMs displayed a higher surface concentration of molecules and lower conductance compared with Ru-tripod SAMs. The attenuation factor of Os-tripod films changed dramatically, upon electrochemical cycling, to a higher value. These observations are in accordance with previously reported electron transfer kinetics studies.


Assuntos
Ouro , Microscopia de Tunelamento , Microscopia de Força Atômica , Propriedades de Superfície , Ouro/química , Oxirredução
6.
Chemistry ; 27(71): 17889-17899, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34761431

RESUMO

The synergistic functioning of redox-active components that emerges from prototypical 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl is described. Interestingly, even if a trans conformation of the native assembly is expected, due to electrostatic repulsion between cationic pyridinium units, we demonstrate that cis conformation is equally energy-stabilized on account of a peculiar LUMO (SupLUMO) that develops through space, encompassing the two pyridiniums in a single, made-in-one-piece, electronic entity (superelectrophoric behavior). This SupLUMO emergence, with the cis species as superelectrophore embodiment, originates in a sudden change of electronic structure. This finding is substantiated by insights from solid state (single-crystal X-ray diffraction) and solution (NOE NMR and UV-vis-NIR spectroelectrochemistry) studies, combined with electronic structure computations. Electrochemistry shows that electron transfers are so strongly correlated that two-electron reduction manifests itself as a single-step process with a large potential inversion consistent with inner creation of a carbon-carbon bond (digital simulation). Besides, absence of reductive formation of dimers is a further indication of a preferential intramolecular reactivity determined by the SupLUMO interaction (cis isomer pre-organization). The redox-gated covalent bond, serving as electron reservoir, was studied via atropisomerism of the reduction product (VT NMR study). The overall picture derived from this in-depth study of 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl proves that trans and cis species are worth considered as intrinsically sharply different, that is, as doubly-electrophoric and singly-superelectrophoric switchable assemblies, beyond conformational isomerism. Most importantly, the through-space-mediated SupLUMO may come in complement of other weak interactions encountered in Supramolecular Chemistry as a tool for the design of electroactive architectures.


Assuntos
Eletrônica , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância Magnética , Conformação Molecular
7.
Angew Chem Int Ed Engl ; 60(9): 4732-4739, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33205862

RESUMO

Environmental control of single-molecule junction evolution and conductance was demonstrated for expanded pyridinium molecules by scanning tunneling microscopy break junction method and interpreted by quantum transport calculations including solvent molecules explicitly. Fully extended and highly conducting molecular junctions prevail in water environment as opposed to short and less conducting junctions formed in non-solvating mesitylene. A theoretical approach correctly models single-molecule conductance values considering the experimental junction length. Most pronounced difference in the molecular junction formation and conductance was identified for a molecule with the highest stabilization energy on the gold substrate confirming the importance of molecule-electrode interactions. Presented concept of tuning conductance through molecule-electrode interactions in the solvent-driven junctions can be used in the development of new molecular electronic devices.

8.
J Am Chem Soc ; 142(11): 5162-5176, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32101420

RESUMO

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of 2, an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen (MV).

9.
Nanoscale ; 11(27): 12959-12964, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31259338

RESUMO

A tetraphenylmethane tripod functionalized with three thiol moieties in the para position can serve as a supporting platform for functional molecular electronic elements. A combined experimental scanning tunneling microscopy break junction technique with theoretical approaches based on density functional theory and non-equilibrium Green's function formalism was used for detailed charge transport analysis to find configurations, geometries and charge transport pathways in the molecular junctions of single molecule oligo-1,4-phenylene conductors containing this tripodal anchoring group. The effect of molecular length (n = 1 to 4 repeating phenylene units) on the charge transport properties and junction configurations is addressed. The number of covalent attachments between the electrode and the tripodal platform changes with n affecting the contact conductance of the junction. The longest homologue n = 4 adopts an upright configuration with all three para thiolate moieties of the tripod attached to the gold electrode. The contact conductance of the tetraphenylmethane tripod substituted by thiols in the para position is higher than that substituted in the meta position. Such molecular arrangement is highly conducting and allows well-defined directional positioning of a variety of functional groups.

10.
Chem Commun (Camb) ; 55(23): 3351-3354, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30815643

RESUMO

Four molecules containing identical tripodal anchors and p-oligophenylene molecular wires of increasing length were used to demonstrate tuning of the asymmetric molecular junction to the desired geometry by probabilistic mapping of single molecule junction configurations in a scanning tunnelling microscopy break junction experiment.

11.
Langmuir ; 34(22): 6405-6412, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29751731

RESUMO

Adsorption properties of a series of redox-active expanded pyridinium molecules were studied at an electrified interface by cyclic and alternating current voltammetry methods. It was shown that the adsorbed state can sufficiently block N-pyramidalization of the pyridinium redox center of 2',6'-diphenyl-[4,1':4',4''-terpyridin]-1'-ium tetrafluoroborate (2), leading to a change of the mechanism from a single two-electron-transfer process to stepwise transfer of two electrons. Chemically locked molecules 1, 9-(pyridin-4-yl)benzo[ c]benzo[1,2]quinolizino[3,4,5,6- ija][1,6]naphthyridin-15-ium tetrafluoroborate (ring fusion), and 3, 3,5-dimethyl-2',6'-diphenyl-[4,1':4',4''-terpyridin]-1'-ium tetrafluoroborate (steric hindrance) do not enable N-pyramidalization of the redox center upon electron transfer (ET) and serve as references. It was shown that 1 follows Langmuir-type adsorption around a potential of zero charge and that 1-3 form a close-packed film with some repulsive interactions between individual molecules at potentials where ET takes place. It has been suggested that all three molecules lie flat on the electrode surface, with the lowest free energy of adsorption found for 2. Maximum surface concentration Γ* equal to (1.4 ± 0.1) × 10-10 mol·cm-2 was found for 1, (1.5 ± 0.1) × 10-10 mol·cm-2 for 2, and (1.6 ± 0.1) × 10-10 mol·cm-2 for 3. These findings will help to clarify the role of molecular contacts with conducting substrate in the single-molecule electron-transport measurements of 1-3 during the metal-molecule-metal junction formation process.

12.
Chemistry ; 22(37): 13218-35, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27505302

RESUMO

The efficient synthesis of tripodal platforms based on tetraphenylmethane with three acetyl-protected thiol groups in either meta or para positions relative to the central sp(3) carbon for deposition on Au (111) surfaces is reported. These platforms are intended to provide a vertical arrangement of the substituent in position 4 of the perpendicular phenyl ring and an electronic coupling to the gold substrate. The self-assembly features of both derivatives are analyzed on Au (111) surfaces by low-temperature ultra-high-vacuum STM, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and reductive voltammetric desorption studies. These experiments indicated that the meta derivative forms a well-ordered monolayer, with most of the anchoring groups bound to the surface, whereas the para derivative forms a multilayer film with physically adsorbed adlayers on the chemisorbed para monolayer. Single-molecule conductance values for both tripodal platforms are obtained through an STM break junction experiment.

13.
Biointerphases ; 11(3): 031003, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405347

RESUMO

Adsorption properties of protein Papain at the solid|liquid (0.1 M KCl) interfaces of different hydrophobicity [highly oriented pyrolytic graphite (HOPG), bare gold, CH3, OH, and COOH-terminated self-assembled monolayers on gold] were studied by a combined quartz crystal microbalance and atomic force microscopy techniques. It was found that Papain forms an incomplete monolayer at hydrophobic interfaces (HOPG and CH3-terminated substrate), whereas on more hydrophilic ones, a complete monolayer formation was always observed with either the onset of the formation of a second layer (bare gold substrate) or adsorption in a multilayer fashion, possibly a bilayer formation (OH-terminated substrate). The surface concentration and compact monolayer film thickness was much lower on the COOH-terminated substrate compared to other surfaces studied. This result was explained by partial dissociation of the interfacial COOH groups leading to additional electrostatic interactions between the positively charged protein domains and negatively charged carboxylate anions, as well as to local pH changes promoting protein denaturation.


Assuntos
Adsorção , Interações Hidrofóbicas e Hidrofílicas , Papaína/metabolismo , Propriedades de Superfície , Ouro/química , Grafite/química , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo
14.
J Am Chem Soc ; 137(35): 11349-64, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26280907

RESUMO

A combined electrochemical and theoretical study of a series of pyridinium-based electrophores, consisting of reference N-alkyl-2,4,6-triarylpyridiniums (1-3) and N-aryl-expanded pyridiniums (EPs), i.e. N-aryl-2,4,6-triarylpyridiniums (4-10), is presented with the aim of elucidating multifaceted mechanisms underpinning the complex electrophoric activity of fluxional EP systems. Series 1-10 constitutes a library of model electrophores showing an incremental variation of their composition, charge, and steric hindrance. By kinetic mapping of the first two heterogeneous electron transfers (ETs) of 1-10 and computational mapping, at the density functional theory level, of their electronic and geometrical features in various redox states, it is established that, depending on whether EPs are made of one (4, 5) or two "head-to-tail"-connected pyridinium rings (6-10), the nature of the redox-triggered distortions (when allowed) is different, namely, N-pyramidalization due to hybridization change in the former case versus saddle-shaped distortion originating from conflicting intramolecular interactions in the latter case (8-10). When skeletal relaxations are sterically hampered, zwitterionic states and electron delocalization with quinoidal features are promoted as alternative relaxation modes. It follows that "potential compression" is changed to "potential expansion" (i.e., a further separation of redox potentials) in single-pyridinium EPs (4, 5), whereas "potential inversion" (i.e., single-step two-electron transfer; 8-10) is changed to stepwise ETs of the Weitz type for two-pyridinium EPs (6, 7). Overall, kinetic rate constants not only consistently indicate the most prominent mechanistic aspects of the reduction pathways of EPs, but they are also instrumental in establishing EPs as a unique class of electrophores.

15.
J Am Chem Soc ; 136(31): 10826-9, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24597856

RESUMO

Two-step redox switching in enantiopure helquat system [P-1](2+) ⇌ [P-1](•+) ⇌ [P-1](0) is demonstrated. The viologen-type electroactive unit embedded directly in the helical scaffold of 1 is responsible for the prominent chiroptical switching at 264 nm. This process is associated with a marked sign-reversal of Cotton effect ramping between Δε = +35 M(-1) cm(-1) for [P-1](2+) and Δε = -100 M(-1) cm(-1) for [P-1](0). This helically chiral system features the most intense chiroptical switch response documented in the field of helicenoids.

16.
Langmuir ; 29(52): 16084-92, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24313270

RESUMO

As a part of our objective to build an immunosensor for the detection of the pesticide atrazine (ATZ) in environmental samples, we studied the self-assembling process of the disulfide derivative of the pesticide atrazine on a gold substrate. Atrazine-based self-assembled monolayers were characterized by ellipsometry, scanning tunneling microscopy, polarization-modulation infrared reflection-absorption spectroscopy (PM IRRAS), X-ray photoelectron spectroscopy and quartz crystal microbalance (QCM) measurements. Two different time constants for the adsorption process were observed, depending on the experimental method used. The QCM data reflect adsorption kinetics of the original disulfide compound, whereas ellipsometry and ex situ PM IRRAS refer to the formation of thiolate (ATZS) monolayers. In situ QCM data demonstrated the suitability of such monolayers for the detection of atrazine in aqueous samples. Exposure of the ATZS sensing surface to an anti-atrazine antibody (anti-ATZ IgG) resulted in complete coverage of the surface by antibody, whereas approximately half of the antibody molecules were displaced from the QCM sensor surface by further addition of atrazine into the solution.


Assuntos
Anticorpos Imobilizados , Anticorpos/química , Atrazina/química , Técnicas Biossensoriais , Ouro/química , Imunoensaio/instrumentação , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
17.
Inorg Chem ; 52(20): 11944-55, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24090453

RESUMO

The synthesis, characterization, redox behavior, and photophysical properties (both at room temperature in fluid solution and at 77 K in rigid matrix) of a series of four new molecular dyads (2-5) containing Ru(II)- or Os(II)-bis(terpyridine) subunits as chromophores and various expanded pyridinium subunits as electron acceptors are reported, along with the reference properties of a formerly reported dyad, 1. The molecular dyads 2-4 have been designed to have their (potentially emissive) triplet metal-to-ligand charge-transfer (MLCT) and charge-separated (CS) states close in energy, so that excited-state equilibration between these levels can take place. Such a situation is not shared by limit cases 1 and 5. For dyad 1, forward photoinduced electron transfer (time constant, 7 ps) and subsequent charge recombination (time constant, 45 ps) are evidenced, while for dyad 5, photoinduced electron transfer is thermodynamically forbidden so that MLCT decays are the only active deactivation processes. As regards 2-4, CS states are formed from MLCT states with time constants of a few dozens of picoseconds. However, for these latter species, such experimental time constants are not due to photoinduced charge separation but are related to the excited-state equilibration times. Comparative analysis of time constants for charge recombination from the CS states based on proper thermodynamic and kinetic models highlighted that, in spite of their apparently affiliated structures, dyads 1-4 do not constitute a homologous series of compounds as far as intercomponent electron transfer processes are concerned.

18.
Chemistry ; 19(19): 6108-21, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23495131

RESUMO

Short monodisperse oligo- (para-phenyleneethynylene) (pOPE) units bearing laterally attached tetrathio-substituted tetrathiofulvalene (TTF) units have been synthesised from functionalised aromatic building blocks by using the Sonogashira cross-coupling methodology. The unusual redox properties of these TTF-pOPE conjugates were observed by employing electrochemical methods, such as cyclic voltammetry and exhaustive electrolysis. We found that formally one half of the TTF units in the pOPE monomer 1, dimer 2, and trimer 3 (with 2, 4, and 6 TTF units, respectively) are electrochemically silent during the first-step oxidation at 0.49 V. We propose the formation of persistent mixed-valence complexes from the TTF and TTF(+·) units present in an equal ratio. Such mixed-valence dyads (single or multiple in the partially oxidised 1-3) exhibit an unusual stability towards oxidation until the potential of the second oxidation at 0.84 V is achieved. This finding suggests that below this potential the oxidation of the respective mix-valence complexes is extremely slow.

19.
J Phys Chem Lett ; 4(4): 589-95, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26281871

RESUMO

Single-molecule conductance in a series of extended viologen molecules was measured at room temperature using a gold-molecule-gold scanning tunneling microscopy break junction arrangement. Conductance values for individual molecules change from 4.8 ± 1.2 nS for the shortest compound to 2.9 ± 1.0 nS for the compound with six repeating units and length of 11 nm. The latter value is almost 3 orders of magnitude higher than that reported for all-carbon-based aromatic molecular wires of comparable length. On the basis of the length of the molecules, an attenuation factor of only 0.06 ± 0.004 nm(-1) (0.006 ± 0.0004 Å(-1)) was obtained. To the best of our knowledge, this is the smallest value reported for the conductance attenuation in a series of molecular wires.

20.
Chem Commun (Camb) ; 48(28): 3433-5, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22358256

RESUMO

This study explains the controversies in the literature concerning the number of electrons involved in the oxidation of quercetin. This stems from inappropriate handling samples, which require strict anaerobic conditions. The redox potential of quercetin strongly depends on the pH and on the presence of dissociation forms in solution.


Assuntos
Elétrons , Oxigênio/química , Quercetina/química , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...