Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(12)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34915463

RESUMO

We have performed electron transport and angle-resolved photo-emission spectroscopy (ARPES) measurements on single crystals of transition metal dipnictide TaAs2cleaved along the (2¯01) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscillations shows four different peaks whose angular dependence was studied with respect to the angle between magnetic field and the [2¯01] direction. The results indicate elliptical shape of the Fermi surface cross-sections. Additionally, a mobility spectrum analysis was carried out, which also reveals at least four types of carriers contributing to the conductance (two kinds of electrons and two kinds of holes). ARPES spectra were taken on freshly cleaved (2¯01) surface and it was found that bulk states pockets at constant energy surface are elliptical, which confirms the magnetotransport angle dependent studies. First-principles calculations support the interpretation of the experimental results. The theoretical calculations better reproduce the ARPES data if the theoretical Fermi level (FL) is increased, which is due to a small n-doping of the samples. This shifts the FL closer to the Dirac point, allowing investigating the physics of the Dirac and Weyl points, making this compound a platform for the investigation of the Dirac and Weyl points in three-dimensional materials.

2.
Sci Rep ; 7(1): 7428, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785047

RESUMO

Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi2Te2Se (BTS) and Sn-doped Bi2Te2Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

3.
Nat Commun ; 7: 13259, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796297

RESUMO

Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics need to be resolved on the timescale of elementary scattering events (∼10 fs). Here, we excite and measure photocurrents in the model topological insulator Bi2Se3 with a time resolution of 20 fs by sampling the concomitantly emitted broadband terahertz (THz) electromagnetic field from 0.3 to 40 THz. Strikingly, the surface current response is dominated by an ultrafast charge transfer along the Se-Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to be orders of magnitude smaller than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are of direct relevance for broadband optoelectronic devices based on topological-insulator surface currents.

4.
Nat Commun ; 7: 10957, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961901

RESUMO

Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size.


Assuntos
Bismuto/química , Elétrons , Semicondutores , Telúrio/química , Teoria Quântica , Eletricidade Estática , Propriedades de Superfície
5.
Nano Lett ; 16(6): 3409-14, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27010705

RESUMO

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.

6.
Nat Mater ; 13(6): 580-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24836736

RESUMO

Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity scattering. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi2Se3, Bi2Te3 and Sb2Te3). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric origin, and establishes a sustainable platform for the singular field-tunable Dirac spin response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...