Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Transplant ; 24(11): 2251-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25289862

RESUMO

The success rate in previous attempts at transforming human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton's jelly of the umbilical cord into dopaminergic cells was a mere 12.7%. The present study was therefore initiated to establish a more effective procedure for better yield of dopaminergic cells in such transformation for more effective HUMSC-based therapy for parkinsonism. To examine, in vitro, the effects of enhanced Nurr1 expression in HUMSCs on their differentiation, cells were processed through the three-stage differentiation protocol. The capacity of such cells to synthesize and release dopamine was measured by HPLC. The therapeutic effects of Nurr1-overexppressed HUMSCs were examined in 6-hydroxydopamine-lesioned rats by quantification of rotations in response to amphetamine. Enhanced Nurr1 expression in HUMSCs promoted the transformation into dopaminergic cells in vitro through stepwise culturing in sonic hedgehog, fibroblast growth factor-8, and neuron-conditioned medium. The success rate was about 71%, as determined by immunostaining for tyrosine hydroxylase and around 94 nM dopamine synthesis (intracellular and released into the culture medium), as measured by HPLC. Additionally, transplantation of such cells into the striatum of hemiparkinsonian rats resulted in improvement of their behavioral deficits, as indicated by amphetamine-evoked rotation scores. Viability of the transplanted cells lasted for at least 3 months as verified by positive staining for tyrosine hydroxylase. Nurr1, FGF8, Shh, and NCM can synergistically enhance the differentiation of HUMSCs into dopaminergic cells and may pave the way for HUMSC-based treatments for Parkinson's disease.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/transplante , Células-Tronco Mesenquimais/citologia , Transtornos Parkinsonianos/terapia , Geleia de Wharton/citologia , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Dopamina/biossíntese , Humanos , Masculino , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo , Cordão Umbilical/citologia
2.
Stroke ; 42(7): 2045-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21566227

RESUMO

BACKGROUND AND PURPOSE: Stroke is a cerebrovascular defect that leads to many adverse neurological complications. Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. METHODS: Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. RESULTS: Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. CONCLUSIONS: Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.


Assuntos
Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Acidente Vascular Cerebral/terapia , Veias Umbilicais/citologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética/métodos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...