Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 29(10): 4269-4283, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35802544

RESUMO

Origami architecture (OA) is a fascinating papercraft that involves only a piece of paper with cuts and folds. Interesting geometric structures 'pop up' when the paper is opened. However, manually designing such a physically valid 2D paper pop-up plan is challenging since fold lines must jointly satisfy hard spatial constraints. Existing works on automatic OA-style paper pop-up design all focused on how to generate a pop-up structure that approximates a given target 3D model. This article presents the first OA-style paper pop-up design framework that takes 2D images instead of 3D models as input. Our work is inspired by the fact that artists often use 2D profiles to guide the design process, thus benefited from the high availability of 2D image resources. Due to the lack of 3D geometry information, we perform novel theoretic analysis to ensure the foldability and stability of the resultant design. Based on a novel graph representation of the paper pop-up plan, we further propose a practical optimization algorithm via mixed-integer programming that jointly optimizes the topology and geometry of the 2D plan. We also allow the user to interactively explore the design space by specifying constraints on fold lines. Finally, we evaluate our framework on various images with interesting 2D shapes. Experiments and comparisons exhibit both the efficacy and efficiency of our framework.

2.
JACS Au ; 2(11): 2426-2445, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465529

RESUMO

The intradermal (ID) space has been actively explored as a means for drug delivery and diagnostics that is minimally invasive. Microneedles or microneedle patches or microarray patches (MAPs) are comprised of a series of micrometer-sized projections that can painlessly puncture the skin and access the epidermal/dermal layer. MAPs have failed to reach their full potential because many of these platforms rely on dated lithographic manufacturing processes or molding processes that are not easily scalable and hinder innovative designs of MAP geometries that can be achieved. The DeSimone Laboratory has recently developed a high-resolution continuous liquid interface production (CLIP) 3D printing technology. This 3D printer uses light and oxygen to enable a continuous, noncontact polymerization dead zone at the build surface, allowing for rapid production of MAPs with precise and tunable geometries. Using this tool, we are now able to produce new classes of lattice MAPs (L-MAPs) and dynamic MAPs (D-MAPs) that can deliver both solid state and liquid cargos and are also capable of sampling interstitial fluid. Herein, we will explore how additive manufacturing can revolutionize MAP development and open new doors for minimally invasive drug delivery and diagnostic platforms.

3.
Sci Adv ; 8(46): eabq2846, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383664

RESUMO

To date, a compromise between resolution and print speed has rendered most high-resolution additive manufacturing technologies unscalable with limited applications. By combining a reduction lens optics system for single-digit-micrometer resolution, an in-line camera system for contrast-based sharpness optimization, and continuous liquid interface production (CLIP) technology for high scalability, we introduce a single-digit-micrometer-resolution CLIP-based 3D printer that can create millimeter-scale 3D prints with single-digit-micrometer-resolution features in just a few minutes. A simulation model is developed in parallel to probe the fundamental governing principles in optics, chemical kinetics, and mass transport in the 3D printing process. A print strategy with tunable parameters informed by the simulation model is adopted to achieve both the optimal resolution and the maximum print speed. Together, the high-resolution 3D CLIP printer has opened the door to various applications including, but not limited to, biomedical, MEMS, and microelectronics.

4.
Sci Adv ; 8(39): eabq3917, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170357

RESUMO

In additive manufacturing, it is imperative to increase print speeds, use higher-viscosity resins, and print with multiple different resins simultaneously. To this end, we introduce a previously unexplored ultraviolet-based photopolymerization three-dimensional printing process. The method exploits a continuous liquid interface-the dead zone-mechanically fed with resin at elevated pressures through microfluidic channels dynamically created and integral to the growing part. Through this mass transport control, injection continuous liquid interface production, or iCLIP, can accelerate printing speeds to 5- to 10-fold over current methods such as CLIP, can use resins an order of magnitude more viscous than CLIP, and can readily pattern a single heterogeneous object with different resins in all Cartesian coordinates. We characterize the process parameters governing iCLIP and demonstrate use cases for rapidly printing carbon nanotube-filled composites, multimaterial features with length scales spanning several orders of magnitude, and lattices with tunable moduli and energy absorption.

5.
Addit Manuf ; 552022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35602181

RESUMO

Resolving microscopic and complex 3D polymeric structures while maintaining high print speeds in additive manufacturing has been challenging. To achieve print precision at micrometer length scales for polymeric materials, most 3D printing technologies utilize the serial voxel printing approach that has a relatively slow print speed. Here, a 30-µm-resolution continuous liquid interface production (CLIP)-based 3D printing system for printing polymeric microstructures is described. This technology combines the high-resolution from projection microstereolithography and the fast print speed from CLIP, thereby achieving micrometer print resolution at x103 times faster than other high-resolution 3D printing technologies. Print resolutions in both lateral and vertical directions were characterized, and the printability of minimum 30 µm features in 2D and 3D has been demonstrated. Through dynamic printing optimization, a method that varies the print parameters (e.g. exposure time, UV intensity, and dark time) for each print layer, overhanging struts at various thicknesses spanning 1 order of magnitude (25 µm - 200 µm) in a single print are resolvable. Taken together, this work illustrates that the micro-CLIP 3D printing technology, in combination with dynamic printing optimization, has the high resolution needed to enable manufacturing of exquisitely detailed and gradient 3D structures, such as terraced microneedle arrays and micro-lattice structures, while maintaining high print speeds.

6.
Nat Commun ; 10(1): 1753, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988290

RESUMO

Understanding the dynamics of ring polymers is a particularly challenging yet interesting problem in soft materials. Despite recent progress, a complete understanding of the nonequilibrium behavior of ring polymers has not yet been achieved. In this work, we directly observe the flow dynamics of DNA-based rings in semidilute linear polymer solutions using single molecule techniques. Our results reveal strikingly large conformational fluctuations of rings in extensional flow long after the initial transient stretching process has terminated, which is observed even at extremely low concentrations (0.025 c*) of linear polymers in the background solution. The magnitudes and characteristic timescales of ring conformational fluctuations are determined as functions of flow strength and polymer concentration. Our results suggest that ring conformational fluctuations arise due to transient threading of linear polymers through open ring chains stretching in flow.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3293-3296, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060601

RESUMO

We present the development and basic evaluation of a new wearable device for estimation of ankle joint impedance called Tarsusmeter. The device is intended for application with persons with locomotion disabilities to quantify the ankle joint impedance, especially in cases of spasticity where the joint's impedance is expected to differ significantly from healthy persons. The lack of a simple and light weight solution to provide objective evaluation of ankle joint impedance motivates the design criteria of this device to be as such. The target application is also to quantify variable stiffness actuator based orthosis in-vivo. Thus the form factor avoids overlap with custom shapes of such orthosis. The paper presents the mechanical design of the device, physical simulations to characterize the device-leg system, the used algorithm for impedance parameter estimation, and preliminary testing of the device.


Assuntos
Articulação do Tornozelo , Fenômenos Biomecânicos , Impedância Elétrica , Locomoção , Aparelhos Ortopédicos , Dispositivos Eletrônicos Vestíveis
8.
J Chem Phys ; 141(17): 174903, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381543

RESUMO

Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.


Assuntos
DNA/química , Polímeros/química , Termodinâmica , Cinética , Soluções
9.
Langmuir ; 28(40): 14313-22, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22966949

RESUMO

Poly(4-benzoyl-p-xylylene-co-p-xylylene), a biologically compatible photoreactive polymer belonging to the parylene family, can be deposited using a chemical vapor deposition (CVD) polymerization process on a wide range of substrates. This study discovered that the solvent stability of poly(4-benzoyl-p-xylylene-co-p-xylylene) in acetone is significantly increased when exposed to approximately 365 nm of UV irradiation, because of the cross-linking of benzophenone side chains with adjacent molecules. This discovery makes the photodefinable polymer a powerful tool for use as a negative photoresist for surface microstructuring and biointerface engineering purposes. The polymer is extensively characterized using infrared reflection adsorption spectroscopy (IRRAS), scanning electron microscopy (SEM), and imaging ellipsometry. Furthermore, the vapor-based polymer coating process provides access to substrates with unconventional and complex three-dimensional (3D) geometries, as compared to conventional spin-coated resists that are limited to flat 2D assemblies. Moreover, this photoresist technology is seamlessly integrated with other functionalized parylenes including aldehyde-, acetylene-, and amine-functionalized parylenes to create unique surface microstructures that are chemically and topographically defined. The photopatterning and immobilization protocols described in this paper represent an approach that avoids contact between harmful substances (such as solvents and irradiations) and sensitive biomolecules. Finally, multiple biomolecules on planar substrates, as well as on unconventional 3D substrates (e.g., stents), are presented.


Assuntos
Processos Fotoquímicos , Polímeros/química , Xilenos/química , Modelos Moleculares , Conformação Molecular , Polimerização , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...